UNIVERSIDADE FEDERAL DE SANTA CATARINA
 PÓS-GRADUAÇÃO EM LETRAS/INGLÊS E LITERATURA CORRESPONDENTE

PRODUCTION OF/I/ IN THE ENGLISH CODA BY BRAZILIAN EFL LEARNERS AN ACOUSTIC-ARTICULATORY ANALYSIS

JACIR PAULO BARATIERI

Dissertação submetida à Universidade Federal de Santa Catarina em cumprimento parcial dos requisitos para obtenção do grau de MESTRE EM LETRAS

FLORIANÓPOLIS

Dezembro de 2006

Esta dissertação de Jacir Paulo Baratieri, intitulada Production of /I/ in the English coda by EFL learners - an acoustic-articulatory analysis, foi julgada adequada e aprovada em sua forma final, pelo Programa de Pós-Graduação em Letras/Inglês e Literatura Correspondente, da Universidade Federal de Santa Catarina, para fins de obtenção do grau de

MESTRE EM LETRAS

Área de concentração: Inglês e Literatura Correspondente Opção: Língua Inglesa e Lingüística Aplicada

Dr. Jose Luiz Meurer Coordenador

Dra. Rosana Denise Koerich Orientadora e Presidente

Dra. Rosane Silveira
Co-orientadora
BANCA EXAMINADORA:
Dra. Izabel Christine Seara
Examinadora

Dr. Michael Alan Watkins
Examinador

To my family:
Sandra
Anna Giovanni

Dirceu

ACKNOWLEDGEMENTS

I would like to express my faith and gratitude to the righteous Lord.
I would like to thank my loved ones, Sandra, Anna and Giovanni, for having trusted me and encouraged me despite of living far apart during such a long time; my parents, Dirceu and Iraci, for being so supportive at all moments; and CNPQ and CAPES for providing me with financial support.

I would also like to thank all my professors, who helped me improve my theoretical knowledge: Anelise Reich Corseuil, Antonio João Teixeira, Barbara Oughton Baptista, Izabel C. Seara, José Luiz Meurer, Lêda Maria Braga Tomitch, Mailce Borges Mota Fortkamp, Maria Lúcia Milléu Martins, Maria Lúcia B. de Vasconcellos, Rosane Silveira, and Viviane Maria Heberle.

I would specially like to express my gratitude to my advisor, Prof. Dr. Rosana Denise Koerich, for tons of helpful ideas, useful suggestions, unfailing guidance, fruitful advisory meetings, insightful e-mails, and millions of other essential things.

I would also like to thank my co-advisor Prof. Dr. Rosane Silveira, for helping me with the statistical tests, carefully reading my thesis and suggesting several relevant modifications.

I would like to acknowledge the vast knowledge and experience of Dr. Izabel Christine Seara, who patiently answered my questions on acoustic phonetics.

I would like to show gratitude for the members of the committee, Dr. Izabel Christine Seara, Dr. Michael Alan Watkins, and Dr. Andréia Shurt Rauber for promptly accepting to read my thesis and participate in the defense.

I would like to render my thanks to Andréia, an extraordinary friend of mine, who moved heaven and earth to assist me and for having always encouraged me to pursue my goals. I have no words to thank her enough.

Finally, I would like to thank all my classmates and colleagues at UFSC. They will be in my heart forever.

ABSTRACT
PRODUCTION OF/I/ IN THE ENGLISH CODA BY BRAZILIAN EFL LEARNERS AN ACOUSTIC-ARTICULATORY ANALYSIS
Jacir Paulo Baratieri
\title{ UNIVERSIDADE FEDERAL DE SANTA CATARINA 2006 }
Supervising Professor: Dr. Rosana Denise Koerich
Co-supervising Professor: Dr. Rosane Silveira

This research focused on the articulatory and acoustic properties of the productions of /I/ in the English coda by EFL Brazilian learners. Considering that BP /I/ in coda position is normally vocalized, it was expected that Brazilian EFL learners would realize it in the English coda with different degrees of vocalization due to the action of L1 transfer and interlanguage development processes. Moreover, it was also expected that the degree of /I/ vocalization would be influenced by the phonological environment due to coarticulation processes. Also, considering that the acoustic properties of sonorant consonants are related to the action of the articulators, the first formant frequencies and duration of $/ \mathrm{I} /$ and its syllable peak were expected to denounce its articulatory properties. The data were collected from a group of 20 Brazilian EFL learners. The results revealed three realizations of /I/:(a) partially vocalized, (b) vocalized and (c) non-vocalized. Concerning the effects of the phonological environment, the results indicated that: (a) a 'pause' and a 'consonant
across the word' triggered significantly more /I/ vocalization than a 'consonant within the word'; (b) voiceless consonants favored significantly more vocalization than voiced ones; and (c) place of articulation was the decisive factor affecting vocalization. As regards acoustic phonetics, the results revealed that: (a) the F3/F1 and F2/F1 ratios of the vowel in the syllable peak were higher the more vocalized the /I/ was (' W ' > 'Lw' > 'L'). However, they were only significantly higher for the realizations of /I/ as 'W'; (b) it was statistically possible to identify the realizations of /I/ as 'Lw' by looking at the F3/F1 of /I/; and (c) it was possible to identify the realization of /I/ by looking at its duration.

112 pages (excluding appendix)
28,575 words (excluding appendix)

PRODUÇÃO DO /I/ EM SÍLABA CODA POR BRASILEIROS ESTUDANTES DE INGLÊS COMO LINGUA ESTRANGEIRA - UMA ANÁLISE ACÚSTICOARTICULATÓRIA

Jacir Paulo Baratieri

UNIVERSIDADE FEDERAL DE SANTA CATARINA 2006
Professora orientadora: Dra. Rosana Denise Koerich
Professora co-orientadora: Dra. Rosane Silveira

Esta pesquisa focalizou as propriedades acústicas e articulatórias do /I/ do Inglês em coda silábica produzido por estudantes Brasileiros de EFL. Considerando que o /I/ do português brasileiro é normalmente vocalizado em coda silábica, estudantes brasileiros produziriam o /I/ do Inglês com diferentes graus de vocalização devido a transferência do som da L1 e ao desenvolvimento da interlíngua. Além disso, o grau de vocalização do /l/ seria influenciado pelo ambiente fonológico, devido ao processo de co-articulação. Também, considerando que as propriedades acústicas das sonorantes são relacionadas à ação dos articuladores, era esperado que a frequiência dos primeiros formantes e a duração, do /I/ e do núcleo silábico, denunciariam as propriedades articulatórias dos $/ \mathrm{I} /$. Os dados foram coletados com um grupo de 20 estudantes brasileiros de EFL. Os resultados revelaram três realizações do /I/: (a) parcialmente vocalizado, (b) vocalizado e (c) não-vocalizado. Com referência aos efeitos do ambiente
fonológico, os resultados indicaram que: (a) uma 'pausa' e uma 'consoante na palavra seguinte' significantemente provoca mais vocalização do /I/ que uma 'consoante na mesma palavra'; (b) consoantes surdas significantemente favorecem mais vocalização do /I/ que as consoantes sonoras; e (c) o ponto de articulação foi o fator decisivo que afetou a vocalização do /I/. Com referência aos parâmetros acústicos, foi revelado que: (a) as razões F3/F1 e F2/F1 da vogal do núcleo silábico foram mais altas quanto mais vocalizadas foi a produção do /I/ ('W' > 'Lw' > 'L'). Entretanto, elas foram somente significantemente mais altas para as realizações do /I/ como 'W'; (b) foi estatisticamente possível identificar as realizações do /I/ como 'Lw' através da observação da razão F3/F1 do /I/; e (c) foi possível identificar as diferentes realizações do /I/ através da análise da sua duração.

112 páginas (excluindo anexos)
28.575 palavras (excluindo anexos)

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION
 01

1.1 Background to the study... 01
1.2 Statement of purpose.. 04
1.2.1 Research questions and hypotheses.. 04
1.3 Significance of the study.. 05
1.4 Organization of the thesis... 06

CHAPTER 2 - ARTICULATORY FEATURES OF THE PHONEME /I/ 08
2.1 Introduction... 08
2.2 The faces of the phoneme /I/ in English and in BP.. 08
2.3 The vocalization of /I/: A natural phenomenon.. 14
2.4 Phonological environments that may favor and inhibit /I/ vocalization.............. 17

CHAPTER 3 - ACOUSTIC PROPERTIES OF THE PHONEME /I/ 24
3.1 Introduction... 24
3.2 Source-filter theory of speech production - an overview.................................... 24
3.3. Visual representation of speech... 27
3.4 Acoustic properties of the lateral phoneme... 32

CHAPTER 4 - METHOD 39
4.1 Introduction.. 39
4.2 Participants.. 39
4.3 Material... 41
4.3.1 Participants' Profile Questionnaire.. 41
4.3.2 Directed Speech Production Test.. 42
4.4 Procedures 46
4.4.1 Data collection session 46
4.4.2 Data analysis 48
4.4.2.1 Participants' productions assessment. 50
4.4.2.2 Acoustic procedures 54
4.4.2.2.1 - Extraction of acoustic features. 55
4.4.2.3 Operationalization of variables and statistical treatment. 57
CHAPTER 5 - RESULTS AND DISCUSSION 60
5.1 Introduction 60
5.2 How Brazilian EFL learners produce /I/ in the English coda. 60
5.2.1 The results in light of the literature. 62
5.3 The influence of the following phonological environment. 65
5.3.1 Pause, consonant within the word and consonant across the word. 65
5.3.1.1 The results in light of the literature. 67
5.3.2 Voicing of the following consonant 69
5.3.3 Place of articulation 70
5.3.3.1 The results in the light of literature 74
5.3.4 Manner of articulation. 75
5.3.5 Place vs. manner of articulation. 79
5.4 Acoustic behavior of the different realizations of /I/ 80
5.4.1 The syllable peak formant frequencies 81
5.4.1.1 The results in the light of literature 84
5.4.2 The formant frequencies of different productions of /I/ 86
5.4.2.1 The results in the light of literature 88
5.4.2.2 A comparison between the formant frequencies and ratios of $/ \mathrm{I} /$ 91
5.4.2.3 Alternative proposal. 92
5.4.3 Duration 94
5.4.3.1 The results in the light of literature 95

CHAPTER 6 - CONCLUSION

\qquad6.1 Final remarks.99
6.2 Pedagogical implications 104
6.3 Limitations and suggestions for further research. 106

LIST OF TABLES

Table 1: Ratios of formant frequency means based on Dalston (1974) data 36
Table 2: \quad Formant frequencies of the dark $/ \mathrm{I} /$ and the $/ \mathrm{w} /$ 36
Table 3: English and Brazilian formant frequencies for $/ \varepsilon /$ 37
Table 4: Participants' background 40
Table 5: /l/ realizations by Brazilian EFL learners 61
Table 6: /I/ vocalization in the phonological environments: a pause, a consonant within the word and a consonant across the word 66
Table 7: /I/ vocalization in the phonological environments: voiced andvoiceless consonants69
Table 8: labiodental, alveolar, post-alveolar and velar... 71Table 9:Difference significance between the levels of the variable place ofarticulation72
Table 10: /I/ vocalization in the phonological environments: plosive, nasal and fricatives 76
Table 11: Difference significance between the levels of the variable manner of articulation 77
Table 12: Degree of vocalization (mean) - Place vs. Manner of articulation. 79
Syllable peak acoustical behavior in face of different productions of
Table 13:
/I/81
Table 14: Mann-Whitney test - ratios of the peak 82
Table 15: English and Brazilian formant frequencies for $/ \varepsilon /$ 85
Table 16: Acoustical behavior of different productions of /I/ 86
Table 17: Mann-Whitney test - ratios of the peak 87
Table 18: Formant frequencies and ratios of different realizations of /I/ 89
Table 19: Formant frequencies of /I/ and /w/ 91
Table 20: Duration of different productions of /I/ 94
Mann-Whitney test - duration from the peak beginning to the
Table 21:/I/end95

LIST OF FIGURES

Figure 1: \quad The Speech Chain based on Denes and Pinson (1993) 24
The complex wave form of the utterance "bell" and a zoom in its
syllable peak 28
Figure 3: Power spectrum from the phoneme /I/ of the utterance "bell" 29
Figure 2: Power spectrum and the LPC from the phoneme /I/ of the utterance "bell" 30
Figure 5: Spectrogram of the utterance "bell" 31
Figure 6: Praat window 49
Figure 7:
Spectra of /I/ realized as a liquid consonant (A) and as a back vowel (B) 52
Figure 8: Praat window 55
Figure 9: Different productions of /I/ in the English coda. 63
Figure 10: Supposition of the evolution of the phoneme /l/ in coda position.. 64
Figure 11: Degree of vocalization of $/ \mathrm{I} /$ according to place of articulation of the following consonant 73
Figure 12: Degree of /I/ vocalization - manner vs. place of articulation 80
Figure 13:F3/F1 vs. F2/F1 ratios of the syllable peak -95% confidenceinterval83
Figure 14:F3/F1 vs. F2/F1 ratios of the realizations of /1/ - 95\% confidenceinterval87

LIST OF APPENDICES

Appendix A: Participants' Profile Questionnaire 114
Appendix B: Directed speech production test slides 118
Appendix C: List of labels for the phonemes of /I/productions. 120
Appendix D: Variable operationalization. 121
Appendix E: Complete tables of realizations of /I/ taking into consideration the following context in terms of voicing 123
Appendix F: Complete tables of realizations of /I/ taking into consideration the following context in terms of place of articulation 125
Appendix F.a: Pearson correlation between voiced vs. voiceless and place of articulation 128
Appendix G: Complete tables of realizations of /I/ taking into consideration the following context in terms of manner of articulation 129
Appendix H: Realizations of /I/ taking into account manner vs. place of articulation. 131
Appendix I: Different realizations of /I/ by participants and contexts 132
Appendix J: Spectrograms and spectra of each realization of /I/ 135
Appendix K: Acoustic properties of different realizations of /I/ 137
Appendix L: Script written for the present study 154

CHAPTER 1

INTRODUCTION

1.1 Background to the study

In many varieties of English, the phoneme/I/ in coda position is characterized as a coronal lateral approximant that involves the combination of a salient dorsal (vocalic) gesture followed by a weaker coronal (consonantal) gesture. The vocalic gesture refers to tongue dorsum retraction whereas the consonantal gesture refers to the tongue tip or blade touching the dental/alveolar area (Giles \& Moll, 1975; Sproat \& Fujimura, 1993).

The Brazilian Portuguese (BP) /I/ in coda position is mainly characterized by the loss of the consonantal gesture, which makes it similar to the glide $/ \mathrm{w} /$ or the back vowel / u/ (Cristórafo Silva, 2002; Lamprecht, 2004; Netto, 2001; Tasca, 2002).

According to Baptista (2001), the fact that the BP final /I/ is usually pronounced as /u/ may lead the English learner to mispronunciation, which might result in misunderstandings. In fact, Moore (2004) and Baratieri (2005) found evidence that BP learners of English vocalize both the BP and the English final /I/. Hence, it seems plausible to hypothesize that transfer might operate in the vocalization of $/ \mathrm{I} /$ in the English coda.

Recent studies by Baptista (2000), Rauber (2002), Koerich (2002), Kluge (2004), and Silveira (2004) have provided evidence to the process of transfer, that is, the influence of BP on the acquisition of English sounds, such as final obstruents, initial /s/ clusters and final nasals. However, some studies reveal that not only L1 transfer occurs
but also interlanguage development processes operate in the acquisition of foreign language speech sounds. For example, Baptista (1992) claims that in the beginning of the process of acquisition of English, BP learners' vowels are clearly produced with features of the native language, but eventually learners tend to acquire the new $\mathrm{L}^{1}{ }^{1}$ vowels.

In this line of thought, it can also be hypothesized that BP EFL learners may realize the /I/ in the English coda with different degrees of vocalization due to L1 transfer and to interlanguage development.

Besides investigating the operation of transfer and developmental processes, foreign language acquisition studies have also investigated the influence of the phonological environment in which the target sound is inserted in its realization (e.g., Baptista \& Silva Filho, 1997; Carlisle, 1992, 1997, 2001; Koerich, 2002; Rebello, 1997). Focusing specifically on the final /I/, both Moore's (2004) and Baratieri's (2005) studies of BP learners of English indicated that /I/ vocalization was influenced by the following phonological environment. However, owing to the small scope of both studies it was not possible to provide substantial data accounting for the effect of the variable.

In this sense, the present study intends to add to those, investigating the influence of the phonological environment following /I/ in either favoring or inhibiting its vocalization. The field for this investigation was set by the study of Blandon and AlBamerni (1976), who investigated coarticulation of /I/, embedded in several

[^0]phonological environments, and concluded that coarticulation occurred freely from both left to right and right to left.

More specifically regarding the effect of the following phonological environment on /I/ vocalization, it is traditionally believed that /I/ vocalization more frequently occurs in prepausal position, as well as before velars and labials, than before apicals and palatals. However, in a considerable number of Romance languages /I/ vocalization is more frequent before coronals than before labials, velars and pause (Recasens, 1996). In BP, for example, the following coronal consonant seems to favor the vocalization of the liquid/I/ in comparison to bilabial and dorsal consonants (Lamprecht, 2004).

Another issue addressed in the present study regards acoustic phonetics. It is argued that the first formant frequencies are the result of the action of the vocal tract shape on the sound source, and thus good indicators of vowel and voiced approximant qualities (Ladefoged, 2001). Hence, the different ways /I/ is produced would be directly related to the action of the articulators in the vocal tract, which in turn would directly reflect on the acoustic properties of the segment. In summary, different realizations of /I/ would present particular acoustic properties, thus it would be possible to deduce /I/ articulatory features by analyzing its acoustic properties.

Moreover, considering that the segments are affected by its neighbors due to coarticulation, different realizations of /I/ in the English coda would affect the realization of the syllable peak and consequently its acoustic properties. Thus, it would be possible to deduce /I/ articulatory features by analyzing the acoustic properties of the syllable peak.

1.2 Statement of purpose

The present study aimed at analyzing the production of the phoneme/I/ in the English coda by BP learners of English as a foreign language (EFL) in order to investigate the effect of the following phonological environment on the production of the /I/. Moreover, it also aimed at analyzing some acoustic properties of /I/ and the syllable peak in order to investigate whether there is a relationship between them and the articulatory realizations of $/ \mathrm{I} /$.

1.2.1 Research questions and hypotheses

According to the objectives of this research, the following research questions and hypotheses were investigated:

Question 1: How do Brazilian EFL learners produce /I/ in the English coda?
H_{1} : Brazilian EFL learners present different realizations for /I/ in the English coda.

Question 2: Does the following phonological environment in terms of: (a) a pause, (b) a consonant within the word, or (c) a consonant across the word influence the vocalization of /I/ in the English coda?
H_{2} : The degree of vocalization of /I/ varies according to the following phonological environment.

Question 3: Does voicing of the following consonant influence the vocalization of /I/ in the English coda?
H_{3} : The degree of vocalization of /I/ is influenced by voicing of the following consonant.

Question 4: Does place of articulation of the following consonant influence the vocalization of /I/ in the English coda?
H_{4} : The degree of vocalization of /I/ is influenced by place of articulation of the following consonant.

Question 5: Does manner of articulation of the following consonant influence the vocalization of /I/ in the English coda?
$H_{5}: H_{1}$: The degree of vocalization of /I/ is influenced by manner of articulation of the following consonant.

Question 6: Which is the decisive factor in influencing the vocalization of $/ \mathrm{I} /$ in the English coda: place or manner of articulation of the following consonant?
H_{6} : Place of articulation of the following consonant determines the degree of /I/ vocalization.

Question 7: Do different realizations of /I/ in the English coda affect the acoustic properties of the syllable rhyme?
H_{7} : The F3/F1 and F2/F1 ratios of the vowel in the nucleus vary according to the realization of $/ \mathrm{I} /$.
H_{8} : The F3/F1 and F2/F1 ratios of /I/ vary according to its realization.
H_{9} : The duration of the vowel plus the /I/ varies according to the realization of /I/.

1.3 Significance of the study

The importance of the present study must be seen in terms of the limited number of investigations on the production of English sounds by BP learners of EFL, and specifically in terms of the very limited number of studies concerning the production of
final consonantal sounds that are considered difficult for Brazilian EFL learners to acquire, as is the case of the final $/ \mathrm{l} /$.

Moreover, the present study is a pioneer attempt at linking the difficulties in producing /I/ in the English coda to the influence of the following phonological environment. Besides that, it is also a pioneer study investigating the acoustic and articulatory properties of different realizations of the phoneme / // in coda position, and the influence of that on the acoustic behavior of the syllable peak.

As a pioneer study, this investigation aimed at contributing with data that will provide helpful insights for writers and teachers to create and implement pronunciation materials on the issue.

1.4 Organization of the thesis

The thesis is divided into five chapters. The next two chapters present the theoretical background for the present study. More specifically, chapter 2 presents a general overview of the articulatory properties of the phoneme $/ \mathrm{I} /$, the phenomenon of vocalization, and the effects of the phonological environment in favoring or inhibiting /I/ vocalization; and chapter 3 reviews the acoustic theories of speech production, presents some considerations about the visual representation of speech and reports on the literature on acoustic properties of the phoneme $/ \mathrm{I} /$, its allophones and its neighboring sounds. Chapter 4 describes the method employed for data collection, including information about the participants, the materials and the procedures. Chapter 5 reports and discusses the results obtained in the present study under the light of the literature reviewed and the hypotheses raised. Finally, chapter 6 presents the
conclusions and discusses the theoretical and pedagogical implications based on the findings of the present study. Furthermore, it points out the limitations of the present study and gives suggestions for further research.

CHAPTER 2

ARTICULATORY FEATURES OF THE PHONEME /I/

2.1 Introduction

Since part of the objective of this study is related to articulatory phonetics of $/ \mathrm{I} /$, the relevant literature was reviewed in order to give support to the hypotheses raised, or at least to enlighten suggestions and propositions. The following topics are treated in this chapter: (a) the features of the phoneme /I/ in English and in BP, encompassing mainly articulatory properties and allophones; (b) /I/ vocalization: A natural phenomenon, which basically consists of /I/ being pronounced as a vowel, which would be an articulatory simpler segment; and (c) the phonological environments that may favor or inhibit vocalization of the dark/I/.

2.2 The faces of the phoneme /I/ in English and in BP

The lateral sounds are part of the class of the liquids, which, in turn, belong to the approximant group of sounds. According to the literature, the phonemes $/ \mathrm{w} /$ as in 'wet', / $\mathbf{j} /$ as in ' y et', /l/ as in 'let' and $/ \mathbf{r} /$ as in 'rat' are classified as approximants due to the fact that they are articulated in such a way that the active articulator (the tongue) approximates the passive articulator (the roof of the mouth), narrowing the passage of air at some point, but without interrupting its flow (Ladefoged, 2005).

Concerning the liquids, Câmara Jr. (1977) says that the Greeks baptized them as liquids due to the fact that whenever the airflow encounters an obstruction it acts as a
liquid that manages to change its direction in order to keep its flow. The class of liquids encompasses the phonemes $/ \mathrm{I} /$ and $/ \mathrm{r} /$ due to the fact that their articulation forms an obstruction inside of the mouth, but the airflow manages to escape.

The phoneme /I/ is the representative of the class of lateral sounds. In summary, lateral sounds stand for any sound in which the air flows out of the mouth freely, over the sides of the tongue, through the channels formed by the tongue lowering just behind its point of contact or approximation with the roof of the mouth (Ladefoged, 2005; Ladefoged \& Maddieson, 1996; Tasca, 2002).

In the Sounds of World's Languages, chapter 6, Ladefoged and Maddieson group various types of sounds of the world's languages which carry a lateral feature and define them as "sounds in which the tongue is contracted in such a way as to narrow its profile from side to side so that a greater volume of air flows around one or both sides than over the center of the tongue" (p. 182). In summary, this definition stands for any sound whose articulation forms (a) a complete central obstruction, hence forming a central occlusion, albeit the air is allowed to flow by its sides (for example, the English /I/ in onset position); or (b) a partial central obstruction, which results in an incomplete medial closure, allowing the air to flow by one or both sides, as well as over the center of it (for example, some forms of British English /I/ in postvocalic positions).

Concerning the specific features of the lateral sounds, Ladefoged and Maddieson point out that they are among the most sonorous of the oral consonants and thus form a special class in the phonotactics of a language, being the segments with the greatest freedom to occur in consonant clusters. Also, the authors say that the laterals vary in terms of (a) phonation (voiced, voiceless, breathy voice and laryngealized); (b) stricture (approximants, fricatives, affricates, flaps and taps); and (c) place of articulation (apical
dental, laminal dental, apical alveolar, laminal alveolar, apical post-alveolar, laminal post-alveolar, sub-laminal palatal, laminal palatal, and velar). However, although several types of lateral sounds are found in the world's languages, the authors state that the least marked ones are the voiced approximants with point of articulation in the dental/alveolar region. All the other realizations of lateral sounds are more marked, occurring mainly in some varieties of aboriginal Australian, Indian, Tibetan and Native American Languages.

Finally, the authors compare the realization of the most common laterals in the world's languages with the realization of the alveolar stops (/t/ and /d/). They say that the active articulator (the tongue) contact (apical/laminal) with the dental/alveolar region acts similarly in both realizations, but for the lateral segment there is a lowering of the active articulator just behind the occlusion, creating paths through which the air flows out freely, instead of being blocked at the sides of the tongue as it occurs with the alveolar stops.

Concerning English, several researchers (e.g., Blandon \& Al-Bamerni, 1976; Halle \& Mohanan; 1985; Ladefoged, 2001; Wells, 1982), agree that in some forms of the language, including American and British English, the phoneme/I/ is a voiced lateral approximant which has two allophones: a) a pre-vocalic/I/, also called "light" or "clear" /I/, as the onset of lip [IIp], which involves contact between the tongue tip or blade with the dental or alveolar region, but in which, instead of the air being blocked, it passes down the tongue sides; and b) a post-vocalic and syllabic/l/, also termed "dark" or "velarized" /I/, as in the coda of pill [pıł] and milk [mıłk], which involves a secondary gesture of tongue retraction and its raising toward the velum.

The allophones - clear and dark / $\mathrm{I} /$ act in complementary distribution in RP^{2} and GA 3, that is, the clear allophone occurs in onset position and the dark one in rhyme position. However, there are accents in which the clear/dark dichotomy is not present. For example, in $\operatorname{SSE}^{4} / \mathrm{I} /$ is realized with a dark quality in all phonological environments, whereas in Welsh and southern Irish English only the clear /I/ occurs in any syllable position (Giegerich, 1992).

As regards the specific articulatory features of the clear and dark $/ \mathrm{I} / \mathrm{s}$, some authors point out that the tongue is more retracted for the dark /I/ (e.g. Gartenberg, 1984, cited in Sproat \& Fujimura, 1993; Giles \& Moll, 1975), and raised toward the velum (Ladefoged, 2001). However, using acoustic and X-ray data for English /I/ in both pre-vocalic and post-vocalic phonological boundaries in the /i-I/ phonological environments, Sproat and Fujimura (1993) brought some light to the realization of the phoneme, saying that it involves two gestures: (a) a vocalic dorsal gesture (tongue retraction and dorsum lowering), and (b) a consonantal apical gesture (the tongue tip touching the dental/alveolar region). The authors propose that the vocalic dorsal gesture has a strong similarity with the syllable nucleus and is, thus, attracted to it, whereas the consonantal apical gesture has a strong relation with the syllable margins and thus is attracted to them. Besides that, they say that the combination of the consonantal apical gesture preceding the vocalic one occurs in syllable-initial $/ \mathrm{I} /$, whereas the opposite occurs in syllable-final $/ \mathrm{I} /$. In summary, Sproat and Fujimura claim that for the

[^1]realization of the clear /I/, first the tongue tip goes towards the palatal area, and then its dorsum is retracted and lowered, whereas for the realization of the dark $/ \mathrm{I} /$, first the tongue dorsum is retracted and lowered, then the tongue tip goes towards the palatal area. But, the tongue-dorsum retraction is greater for the dark $/ \mathrm{I} /$. Therefore, the relationship between the dorsal gesture and the coronal gesture seems to be a salient feature which may phonetically differentiate the clear from the dark/I/. Although their findings are relevant to the study of laterals and are considered in recent studies (e.g., Johnson \& Britain, 2003; Silva, 1996) as well as in the present one, the authors themselves agree that the data from four speakers of Midwestern American English and one speaker of British English was a limitation of their study. It is also important to highlight that Sproat and Fujimura's findings in terms of tongue-dorsum lowering go against the current literature (e.g., Ladefoged, 2001) which claims that the dark / // is characterized by velarization (raising the back of the tongue towards the velum).

The features of the phoneme/I/ in BP seem similar to that of English. According to Cristófaro Silva (2002), when the BP segment/I/ occurs in syllable onsets such as in lata [lata] - 'can', following a consonant such as in placa [plaka] - 'plate', and in an intervocalic position such as in sala [sala] - 'room', it is characterized as voiced, lateral and coronal, varying from alveolar to dental articulation, depending on the dialect. Furthermore, when the BP segment/I/ occurs in syllable rhymes such as sal [sat]- 'salt' and salta [sałta] - 'jumps', it may be articulated with a velar property.

Although these features of the BP phoneme/I/ are similar to those of English, Cristófaro Silva (2002) states that the particular property of velarization of /I/ in coda position is restricted to some dialects spoken in the extreme south of Brazil. Tasca (2002) analyses the result of the studies of Espiga (2001), Quednau (1993) and Tasca (1999) about the production of /I/ in coda position by people from the extreme South of Brazil, and summarizes that most people older than 50 keep the property of velarization and resist to vocalization, whereas younger people behave the opposite.

In the other regions of the country the velar property of the BP phoneme/I/ in coda position is totally absorbed by the process of vocalization. That means that the BP phoneme/l/ in coda position mostly often loses its consonantal gesture and is articulated with the vocalic quality of the back vowel $/ \mathbf{u}$ / or the glide $/ \mathrm{w} /$ (Cristófaro Silva, 2002; Lamprecht, 2004; Netto, 2001; Tasca, 2002). For example, the word mel 'honey' is mostly often realized as [mعw] all over Brazil. Althouth Lamprecht (2004) says that the following coronal consonant favors /I/ vocalization in BP, Koerich (2002) states that /I/ vocalization in BP is a stable fact that is not influenced by the following vowel or consonant. She exemplifies this by referring to the sequences mel escuro ['mevoiS'kurv] - 'dark honey' and mel claro ['meư'klaru] - 'light honey', and points out that the adverb mal - 'badly' and the adjective mau - 'bad' are homophonous - ['maũ] in BP.

Another relevant finding concerns labialization. Espiga (2003) investigated the realization of the post-vocalic phoneme /I/ in the southernmost part of Brazil. Based on
acoustic analysis, he found a hybrid realization of the phoneme /I/ with features of both the velarized allophone [\dagger] and the vocalization /w/, which he categorized as velarized and labialized $\left[\dagger^{w}\right]$. As a result of these findings the author proposes that the process of /I/ vocalization follows three steps: 1) the clear /l/ evolves to dark [\dagger] due to the addition of the [+dorsal] feature; 2) the dark [4] evolves to the velarized and labialized $\left[\dagger^{\mathrm{w}}\right]$ due to the addition of the [+labial] feature; and 3) the velarized and labialized $\left[\dagger^{\mathrm{w}}\right]$ evolves to the vocalized $/ \mathrm{w} /$ due to disconnection of the [+coronal] feature.

In summary, on one hand, both the English RP and GA accents, and the BP allophones of the phoneme/l/ are similarly realized when the segment is in onset position, which means that they share the similar phonetic features of the clear $/ \mathrm{I} /$. On the other hand, when /I/ is in the syllable rhyme, whereas it is mostly realized with a dark quality in both RP and GA accents (although there is literature that confirms the process of vocalization in these accents, see Section 2.3); in BP it is generally realized with very little or no consonantal gesture at all.

2.3 The vocalization of /I/: A natural phenomenon

The first point to be highlighted in this section is that scholars claim that /I/ vocalization is the result of both articulatory change (loss of the consonantal gesture) and misperception (final $/ \mathrm{l} /$ being perceived as $/ \mathrm{u} /$). On the one hand, those who argue in favor of articulatory changes (e.g., Camara Jr., 1973; and Grammont, 1971;

Ohala \& Kawasaki, 1984, cited in Recasens, 1996) state that /I/ vocalization would be favored by alveolar contact loss, that is, the dark /I/ is realized as /u/ or the glide /w/ due to the secondary apical consonantal gesture failure. On the other hand, the evolution from $[\dagger]$ to $/ \mathrm{u} /$ or $/ \mathrm{w} /$ would be the result of the dark $/ \mathrm{I} /$ being misperceived as $/ \mathrm{u} /$ or /w/ due to their acoustic similarity (Ohala, 1974, 1981, 1985; von Essen, 1964, cited in Recasens, 1996).

Although it seems that both the articulatory and the perceptual arguments are consistent in explaining the phenomenon of /I/ vocalization from a phonetic point of view, Johnson and Britain (2003), based on the existing literature and data from Fenland ${ }^{5}$, claim that /I/ vocalization is prone to appear as a natural phenomenon in languages which have the dichotomy between clear and dark /I/. For example, they say that /I/ vocalization is a widespread process in the South-Eastern part of Britain and in many other dialects including American English, Australian English, New Zealand English and Falkland Island English. Furthermore, /I/ vocalization is also observed cross-linguistically, for example, in many dialects of Romance languages ${ }^{6}$ (Recasens, 1996) and in old French (Gess, 1998, 2001, cited in Johnson \& Britain, 2003). The authors argue that $/ I /$ vocalization is due to the emergence of the unmarked and then should be expected. They state that "naturalness has been linked with universal unmarkedness which has been correlated with language change - language change is expected to proceed in the direction of the unmarked" (p. 31). Less marked sounds are

[^2]more natural in the human languages, and hence they are expected to be acquired earlier and more easily than more marked sounds. If the phenomenon of /I/ vocalization is unmarked, then it is expected to emerge in early child language and to appear in language change. Johnson and Britain point out that, historically, children acquiring English strongly tend to replace the dark/l/ by / $\mathrm{u} /$ or /w/, even when no vocalization is apparent in the ambient dialect.

Jakobson (1968, cited in Johnson \& Britain, 2003), states that those sounds which require less physiological effort are also less marked, and hence are the first to be acquired by children, and consequently they appear more frequently in the world's languages. Johnson and Britain make use of the words of Jakobson (1968) that "nearly all the mutilations of ordinary language made by children have a close parallel with the sound changes of different languages of the world" (p. 5). When children replace the dark / // by $/ \mathrm{u} /$ or $/ \mathrm{w} /$, they are merely producing a physiologically less marked sound, whereas the adult language resists the articulatory change in order to keep or introduce greater contrast into its inventory (Stampe, 1969, 1972/1979, cited in Johnson \& Britain, 2003). Nowadays, the /I/ vocalization resistance could be seen as a way of keeping contrast between different social classes.

In summary, Johnson and Britain's claim that /I/ vocalization is the arising of the unmarked is based on the following facts: (a) it emerges in language change; for example, the clear/dark $/ \mathrm{I} /$ dichotomy was rare in British English until the end the $19^{\text {th }}$ century, but by the 1960s the dark /I/ had spread across the southern half of England whereas the other areas preserved the clear /I/ in syllable rhyme position. Nowadays, the process of $/ \mathrm{I} /$ vocalization is widespread throughout part of England, at least; (b) it
emerges in early child language even when no vocalization is apparent in the ambient dialect; and (c) it emerges cross-linguistically; for example, it appears in many dialects of Romance languages (Recasens, 1996). Besides that, Johnson and Britain argue that unmarked forms will tend to be phonetically more natural as well as structurally simpler. Therefore, /I/ vocalization would be considered less marked than the dark /I/ due to the fact that the latter is a complex segment which involves both dorsal and coronal gestures, whereas the former is realized with the loss of the coronal gesture; hence the vocalized /I/ would be considered a structurally and physiologically simpler segment and thus unmarked when compared to the dark /I/. Consequently, it would better fit the less marked CV syllable pattern than the dark /I/.

Johnson and Britain (2003) conclusions somehow corroborate those of Espiga (2003). The former authors demonstrate that /I/ vocalization is natural and expected to emerge in dialects with the clear/dark / I/dichotomy. Also, they found that the dark /I/ may be developed in those dialects with only clear /I/ in all positions. The latter author proposes that $/ \mathrm{I} /$ would evolve to $[\uparrow]$, then to partially vocalized $\left[\dagger^{\mathrm{w}}\right]$ and finally to vocalized /w/.

2.4 Phonological environments that may favor and inhibit / / vocalization

According to Ladefoged (2001), a secondary articulation is an articulation that occurs at the same time as another (primary) articulation. Normally, the secondary articulation adds a vowel-like feature to the primary articulation. In order to illustrate this fact the author explains the phenomenon of palatalization, which is the addition of a
high front tongue position, like that in /i/, to another articulation, and cites the example of the English $/ \mathrm{k} /$ in $k e y$, which is considered more palatalized than the $/ \mathrm{k} / \mathrm{in}$ car, since the place of articulation of the former is nearer the palatal area. Conversely, the author states that velarization occurs when the secondary articulation involves the raising of the back of the tongue towards the velum, like that in $/ \mathrm{u} /$, but without the addition of lip rounding. This is what happens in the velarized /I/ ([\dagger]). Therefore, due to the fact that the vowel quality seems to affect the realization of its neighboring sounds, it may be plausible to argue that the more anterior the vowel preceding the phoneme /I/ in coda position is, the less probability of vocalization, whereas the less anterior the vowel preceding the dark $/ \mathrm{I} /([\uparrow])$ in coda position is, the greater the probability of vocalization. For example: the phoneme/l/ in the word "hill" would be less frequently vocalized than the phoneme/I/ in the word "bull". This supposition corroborates Labov, Cohen, Robins and Lewis (1968, cited in Durian, 2004) that vowel frontness is a better predictor of $/ \mathrm{I} /$ vocalization than vowel height. Furthermore, it also corroborates Wyn Johnson (2005, personal communication) when he said that "back vowels would be more likely to promote vocalization than the front ones, since back vowels are dorsal, hence having an affinity with the dorsal gesture of the dark/I/, whereas front vowels have an affinity with the coronality of the clear/I/".

In terms of vowel quality, Sproat and Fujimura (1993) state that long vowels promote early and long dorsal gestures, whereas short vowels inhibit them. The longer (more salient) dorsal gesture would cause the coronal one to fail, giving room for vocalization. Wyn Johnson corroborates this idea by proposing that the "preceding
vowel length seems to be a factor in promoting vocalization" (2005, personal communication).

The discussion above concerns left to right coarticulation. However, Blandon and Al-Bamerni (1976) investigated coarticulation in RP English /I/ embedded in several phonological environments and concluded that coarticulation occurs freely from either direction. Hence, it seems reasonable to suppose that not only the syllable nucleus but also the following consonant may interact in favoring or inhibiting the vocalization of the dark /I/, probably due to the coarticulation phenomenon.

The existing literature has shown distinct opinions supporting the view that the place of articulation of the following consonant seems to play a role in favoring/inhibiting dark /I/ vocalization. Recasens (1996), for example, brings to the literature traditional beliefs about the phonological environment which is supposed to favor dark /I/ vocalization and questions them due to the fact that those beliefs do not account for what happens in many Romance language dialects. Based on Straka (1968), Grammont (1971), Ohala and Kawasaki (1984), and Hartcastle and Barry (1985), Recasens points out that it is traditionally believed that the dark /I/ vocalization is the result of central alveolar contact loss, which would be more favored in prepausal position, as well as before velars and labials, than before apicals and palatals; at least this seems to be what happens among Slavic and Anglo-Saxon languages.

The scholars agree that in prepausal position there is a great acoustic and articulatory similarity between the dark $/ \mathrm{I} /$ and $/ \mathrm{w} /$, thus vocalization would be favored. Furthermore, they advocate that the tongue configuration for velars (a high back closure and a lowered predorsum) would favor the loss of dark /I/ apical contact,
hence the tongue would adopt a / w /-like feature, and that for labials, the tongue is not involved; that is, there is no lingual activity, which would also favor the loss of dark /I/ apical contact.

In view of this literature, it seems reasonable to add that the labial segments have to do with the secondary articulation of the glide /w/ (labial protuberance), which facilitate the dark /I/ vocalization, and that the other side of the coin shows that following apical and palatal consonants would inhibit the dark /I/ vocalization due to its tongue dorsum raising and fronting, which has to do with the consonantal gesture of the lateral. It also seems reasonable to raise the point that the beliefs mentioned above do not account for what happens in a considerable number of Romance language dialects, in which the dark /I/ vocalization is more frequent before coronals (dental and alveolar stops, fricatives, and affricates) than before labials, velars and pause (Recasens, 1996). In BP, for example, the following coronal consonant seems to favor the vocalization of the liquid/I/ in comparison to bilabial and dorsal consonants (Lamprecht, 2004).

In summary, since the scholars' articulatory and perceptual arguments fail to explain why /I/ vocalization occurs mostly before apicals in Romance languages, Recasens suggested that a dissimilatory perceptual mechanism plays its role, then listeners would assign the gravity percept of the dark /I/ to a following grave labial or velar consonant but not to a following apical alveolar consonant. Hence, the /I/ would be perceived as darker before the dental alveolar than before labials and velars. Listeners would cancel out the dark quality of dark / / before labials and velars due to
their similar spectral properties and thus fail to hear the lateral consonant as dark, preventing vocalization in these environments.

Regarding the preceding consonant, Johnson and Britain mention that coronal consonants inhibit vocalization of the syllabic/I/ (for example, in the words medal and little), whereas labial or dorsal consonants tend to favor it (for example, in the words humble and ankle).

As for the vocalization of /I/ before vowels (for example in sequences such as all empty), its inhibition seems to occur due to linking of the words, hence resyllabification is promoted and /I/ becomes part of the syllable onset. However, if the speaker makes a pause between the two words, vocalization seems to be favored.

All the studies mentioned are based on L1 dark /I/ production. However, Baptista (2001) states that one of the frequent pronunciation errors made by Brazilian learners of English concerns the realization of the English final /I/ as /u/. The author also contributes saying that although the English final /I/ is not always realized with tongue-alveolar closure, the lip-rounding gesture is never present in its production.

Among the very few studies that have been conducted on the production of the English dark/I/ by BP EFL learners are those by Moore (2004) and Baratieri (2005). Moore conducted a pilot-study in which he analyzed the productions of five elementary and four intermediate Brazilian EFL learners and found that both groups produced some final $/ \mathrm{l} / \mathrm{s}$ as $/ \mathrm{u} /$, mainly when the nucleus was a back vowel. The elementary group surpassed the intermediate group in producing the final $/ \mathrm{I} /$ as $/ \mathrm{u} /$. In terms of the following phonological environment, he found that final /l/ was more frequently
realized as $/ \mathrm{u} /$ when followed by a consonant, then when followed by pause, and then by a vowel. It must be noted that Moore's pilot study presented some limitations which may have influenced the results: (a) the number of tokens was very limited considering the scope of the study; (b) the following phonological environment in terms of vowel and consonant qualities was not under control; and hence (c) the effects of the following phonological environment and of the vowel in the syllable peak may have been circular due to coarticulation.

Baratieri (2005) was the pilot for the present study, and investigated the production of dark/I/ by EFL teachers. The results indicated that transfer of the native language sound / $\mathrm{w} /$ was a strategy the participants frequently used to produce the dark /I/. They also revealed that when the dark /I/ was followed by a voiceless consonant it was more frequently vocalized. Furthermore, /I/ vocalization was also more frequent when followed by a consonant within the word, then when followed by a pause, and then when followed by a consonant in onset position of the following word. Like Moore's study, Baratieri's also presented limitations which may have influenced the results. For example, neither the syllable peak quality nor the following vowel and consonant were controlled.

Although at first sight the present study seems similar to Moore (2004) and Baratieri (2005), it differs from them in crucial aspects related to the operationalization and control of variables. Thus, the present study can be seen as a pioneer in investigating the influence of the following phonological environment in terms of consonants and pause in shaping the production of /I/ in the English coda by Brazilian EFL learners. The effect of the following consonant was investigated in terms of (a)
voicing, (b) place of articulation (bilabial, labial-dental, alveolar, post-alveolar and velar), and (c) manner of articulation (plosive, nasal and fricative). In order to ensure that only the following phonological environment would affect the $/ \mathrm{I} /$, the syllable peak was kept under control. Moreover, this is also a pioneer study in investigating the acoustic properties of $/ \mathrm{I} /$ and the syllable peak and their relation to the articulatory properties of realizations of /// in English coda.

The theoretical issues discussed in this chapter will ground the hypotheses and enlighten the discussion of the results with the intention of contributing with the findings to the scarcity literature in the field.

The following chapter presents an overview of the acoustic theories concerning speech production and its visual representation. It also describes the acoustic properties of the lateral phoneme and some of its allophones.

CHAPTER 3

ACOUSTIC PROPERTIES OF THE PHONEME /I/

3.1 Introduction

This chapter presents a general picture of the acoustic theories concerning speech production and its visual representation. It also describes the acoustic properties of the lateral phoneme and some of its allophones.

3.2 Source-filter theory of speech production - an overview

The speech chain formulated by Denes and Pinson (1993) begins with explorations at the linguistic level, in which the speaker plans the linguistic form and translates it into the physiological level, in which the muscles responsible for the breathing and manipulation of the vocal tract play their role. The result is a sound wave ${ }^{7}$ which travels through the atmosphere to the listener's ear and is converted in nerve impulses that are interpreted by the brain (Figure 1).

SPEAKER		ATMOSPHERE	LISTENER	
Linguistic level	Physiological level	Acoustic Level Sound wave	Physiological level	Linguistic level
Brain	The lungs + the vocal tract	\longrightarrow	\longrightarrow	Ear

Figure 1: The Speech Chain based on Denes and Pinson (1993)

The sound wave, which is located in the center of the speech chain, carries physical parameters of speech sounds directly related to the way the sound source was

[^3]generated and filtered. According to Hayward (2000), the sound source is firstly generated by the airflow from the lungs to the glottis, in which the vocal cords function as a valve inhibiting or not its flow through the two main cavities: (a) oral (via the lips) and (b) nasal (via the nose). On the one hand, when the glottis is in an open position, the vocal cords do not vibrate; hence the sound source at the glottis is just turbulent air, also called white noise due to its aperiodic ${ }^{8}$ feature, as the sound source of voiceless sounds. On the other hand, if the vocal cords are close together the air pressure causes them to vibrate; hence the sound source is modulated into a complex periodic ${ }^{9}$ sound wave, as in voiced sounds. This complex periodic sound wave is the result of the vocal cords vibration action, whose movements cause a small variation of air pressure, which follows the same pattern as the vocal cords vibration. The vocal cords vibrate at a frequency, called fundamental frequency $(\mathrm{F} 0)^{10}$, which is equivalent to the number of vocal cords cycles (complete opening and closing movements the vocal cords make in a second). For example, if a sound has an F0 of $100 \mathrm{Hertz}(\mathrm{Hz})^{11}$ it means that the vocal cords make 100 complete movements of opening and closing in a second, hence this frequency of vibration makes the air pressure vary proportionally, resulting in a periodic sound wave with 100 cycles per second. This periodic sound wave is complex, which means that besides the fundamental frequency, it contains lots of other distinct periodic waves, called harmonics, whose frequencies are multiples of the fundamental frequency. Furthermore, the harmonics of the complex periodic sound wave are characterized by their amplitude, which is basically the amount of energy of the sound.

[^4]In more technical terms, the amplitude refers to the size of variation in the air pressure of the sound wave (Hayward, 2000; Johnson, 2003; Ladefoged, 2005; Stevens, 1997). However, the speech sound is not only generated at the glottis by the vocal cords' vibration or lack of it, but the glottis sound source may be filtered by the vocal tract ${ }^{12}$ configuration due to the action of the articulators, resulting then in speech sound. Johnson (2003), based on the source-filter theory of speech production (Fant, 1960), explains that the vocal tract is an acoustic filter that acts as a resonating chamber and thus modifies the sound source. That is, when the sound source is filtered, some of its harmonics resonate and consequently their frequencies are amplified. These resonant frequencies are called formants ${ }^{13}$, and sound formants are directly dependent on the shape of the airway between the glottis and the lips (Stevens, 1997). In summary, each different vocal tract configuration resonates differently reinforcing the sound source at particular frequencies, which are called formants.

Concerning the vocal tract configuration and its main effects on the sound source, on the one hand, when the sound source is just steady turbulent air, as in voiceless sounds, the action of articulators will either interrupt its flow, as in voiceless stops, or just narrow the airflow, hence the result will be hissing noise, as in voiceless fricatives, which are acoustically characterized mainly by the enhancement of the high frequencies. On the other hand, when the sound source is a complex periodic wave produced due to the vocal cords' vibration, as in sonorant sounds, the action of the active articulators ${ }^{14}$ models the vocal tract in several different resonator chambers, thus particular frequencies (formants) that characterize each particular sound acoustically are enhanced.

[^5]Concerning the action of the articulators, Stevens (1997) claims that, the tonguebody position reflects on the frequencies of the first and second formants (F1 and F2). The height affects the F1 frequency and the frontness affects the F2 frequency. The high or low tongue positions lead, respectively, to low or high F1 frequency, whereas front or back tongue positions lead, respectively, to high or low F2 frequency. That is, the higher the tongue-body position, the lower the F1 frequency will be, and the more anterior the tongue-body position, the higher the F2 frequency will be. Furthermore, the author explains that lip rounding affects the first three formants, causing their frequencies to decrease. Therefore, the first formant frequencies are the result of the action of the vocal tract shape on the sound source and thus good indicators of vowel and voiced approximants qualities (Ladefoged, 2001).

As seen in this section, the source-filter theory aims at describing the effect of the vocal tract configuration on the sound source. The next section deals with the visual representation of the invisible sound wave components.

3.3. Visual representation of speech

According to Hayward (2000), a "sound of any kind is invisible and intangible" (p. 9) due to the fact that it is the result of very small and quick movements of air particles which can neither be seen with naked eye nor perceived as separate events. However, it is possible to represent sound by different diagrams in order to better depict and conceptualize it.

First, a sound can be described as a unified entity since it is the combination of several different sine ${ }^{15}$ waves with particular frequencies and amplitudes, which results in only one complex periodic wave that is represented by a diagram known as

[^6]waveform. The analysis of the waveform shows basically duration and amplitude. For example, Figure 2 shows the representation of a sound wave of the utterance "bell" spoken by a male participant of the present study, and a zoom in of 5 milliseconds from the phoneme /I/.

 $(\mathrm{f}=1 / \mathrm{T} \rightarrow \mathrm{f}=2 / 0.0148 \rightarrow \mathbf{f}=\mathbf{1 3 5})$

Figure 2: The complex wave form of the utterance "bell" and a zoom in of 50 ms

By analyzing it, it is basically possible to see the sound behavior through time, that is, its amplitude variation and its pattern of cycle repetition during a period, which enable us to calculate duration of pauses, segments, and the FO (the harmonic with the lowest frequency).

However, the waveform graph does not provide enough information about the individual components of the sound, such as frequency and relative amplitude of its
harmonics, which would facilitate comparisons. In order to have an overview of the individual components of a sound, a two-dimensional diagram known as power spectrum has to be produced. Basically, the power spectrum is the result of Fourier analysis, which consists of decomposing the complex waveform into an arbitrary set of sine waves that may be the composition of the sound, in order to derive their individual frequencies and relative amplitudes (Johnson, 2003).

Figure 3: Power spectrum from the phoneme /I/ of the utterance "bell"

Figure 3 shows the spectrum of a waveform window ${ }^{16}$ of the phoneme /I/ of the utterance "bell" spoken by a male participant of the present study. The horizontal axis represents the frequency and the vertical axis represents the relative amplitude of each harmonic that may have constituted the complex sound wave. In summary, the complex sound wave generated by the vocal cords vibration resonates differently according to each vocal tract configuration; hence the amplitudes of some of its harmonics are amplified, whereas some are attenuated. The first harmonic refers to the F0 and the

[^7]formants are characterized by the most prominent peaks. In other words, the formants are the harmonics with greater energy.

However, sometimes the formants are not easy to be tracked by analyzing the power spectrum, and then studies make use of the Linear Predictive Coding (LPC) analysis in order to measure the formant frequencies of sonorant sounds. In summary, the LPC analysis separates the sound source (the harmonics) and the filter components of the complex sound wave and the result is a smoothed spectrum that shows the resonance peaks of the frequencies and bandwidth ${ }^{17}$, which are necessary for formant tracking (Harrington \& Cassidy, 1999).

Figure 4: Power spectrum and the LPC from the phoneme /I/ of the utterance "bell"

Figure 4 above, shows both the power spectrum and the LPC of the waveform window of the phoneme /I/ from the utterance "bell" spoken by a male participant of the present study. As can be seen, both spectra are two-dimensional diagrams that specify the frequency and relative amplitude of the sound wave, but their main

[^8]difference is the absence of individual harmonic components in the LPC spectrum. Thus, the formants are easier to be tracked since they are identified by the broad peaks.

However, one of the problems in analyzing sound waves using spectra is that time is not represented. That is, spectra only provide information of windowed sound waves, but they do not show how the sound wave components behave through time. According to Johnson (2003), "the power spectrum is more like a snapshot than a movie" (p. 42), thus it is only possible to get an accurate idea of the frequency components of a sound wave at a particular moment in time. In order to see how the sound components behave through time, a diagram called spectrogram may be used. A spectrogram is a diagram that illustrates spectral changes over time; the frequency of the components (harmonics) is shown on the vertical axis, the time is shown on the horizontal axis, and the intensity (proportional to the amplitude) of each component is shown by the band darkness (the darker the band the greater the intensity) (Ladefoged, 2001).

Figure 5: Spectrogram of the utterance "bell"

Figure 5 shows a spectrogram of the utterance "bell" spoken by a male participant of the present study. Taking into consideration that formants are the resonant frequencies that have the greatest intensity, it is possible to track them and see their
behavior through time by looking at the band darkness in the spectrogram. For example, the F2 during the realization of the peak $(/ \varepsilon /)$ has a higher frequency than during the realization of the (II/) (see the horizontal red line behavior). Furthermore, the F3 intensity is higher (darker) during the realization of the peak $(/ \varepsilon /)$ than during the realization of (/I/).

Finally, it is important to highlight that nowadays computer programs can analyze digitalized sounds ${ }^{18}$ and show their components in the form of diagrams such as waveforms, spectra and spectrograms, among others.

3.4 Acoustic properties of the lateral phoneme

Most of the literature on the acoustic properties of the phoneme /I/ discusses it in prevocalic position. In postvocalic position the literature is limited to general broad conceptions with few details. This section gathers the most relevant information on the acoustic properties of the realizations of the phoneme $/ \mathrm{I} /$, in both pre-vocalic and postvocalic positions, in order to provide the rationale for the hypotheses raised in this investigation.

Concerning amplitude, Stevens (1997) states that similarly to the vowels, the approximants $(/ \mathrm{I} /, / \mathrm{r} / \mathrm{l} / \mathrm{j} /$ and $/ \mathrm{w} /$) are produced with vocal cord vibration, but due to a greater constriction in the vocal tract, the amplitudes of the first formants are reduced and their bandwidth are increased. Furthermore, in a study of the geometry of the vocal tract of the American English /I/, Zhang and Espy-Wilson (2004) concluded

[^9]that the supralingual cavity and the presence of two lateral channels (the multiple airflow paths produced by the articulators) result in pole-zero clusters ${ }^{19}$ around the F3 and above ($2-5 \mathrm{kHz}$); consequently, the F3 - F4 frequency region is weakened, resulting in a fairly flat spectrum between 1600 and 3400 Hz . Furthermore, although details differ, this scenario holds true for both clear and dark allophones of /I/ (Lehman \& Swartz, 2000). Also, most of the energy of the laterals is concentrated below 5 kHz , with low-frequency behavior greatly influenced by the back cavity (Narayanan, Alwan \& Haker, 1997). Besides that, from the point of view of the source-filter theory, the acoustic of laterals is very similar to that of nasals due to the fact that the side branch introduces an anti-formant between F2 and F3, causing the amplitude of the higher formants to be reduced (Hayward, 2000; Johnson, 2003).

As for the formant frequencies, Ladefoged and Maddieson (1996) state that "voiced lateral approximants are characterized acoustically by well-defined formant-like resonances", with an F1 lower than 400 Hz ; an F2 that varies between 1650 Hz and 2350 Hz depending on the adjacent segments; and a relatively high F3, between 2850 Hz and 3300 Hz . These measurements refer to the lateral in the onset position produced by a male voice and may vary according to its different points of articulation. For example, the measurements for the apical alveolar lateral are around $386 \mathrm{~Hz}, 1.677 \mathrm{~Hz}$ and 3.162 Hz for F1, F2 and F3, respectively.

Concerning the acoustic relationship between allophones of the phoneme /I/, the dark /I/ is characterized by a relatively lower F2 and higher F1 when compared to the F2 and F1 frequencies of clear /I/ (Lehiste, 1964). The frequency of the F2 will be lower the narrower the back constriction becomes, hence F2 frequency is lower for dark

[^10]/I/ than for clear /I/; The F1 frequency tracks the opposite direction, being higher for dark /I/ than for clear /I/. Therefore, the difference between F2 - F1 is lower for velarized /I/ than for clear /I/ (Ladefoged \& Maddieson, 1996) and the closer the F1 and F2 are together, the more back the sound is (Ladefoged, 2001).

More specifically concerning the acoustic properties of the phoneme /I/ in syllable coda, Hayward (2000) says that "The addition of velarization gives the dark /I/ a more u-like character and this reflects in a lower F2". However, variation in the degree of darkness reflects in considerable variation in F2 frequency. Delattre (1951, cited in Llisterri \& Daudén, 1990) argues that there is a direct relation between the tongue back-and-up and second formant frequency lowering. That means that low F2 denotes tongue backing and dorsal rising which is one of the features of the dark/I/ realization. The study conducted by Llisterri and Daudén (1990), about the production of the French/I/ in coda position spoken both by native Spanish and Catalan presents an F2 frequency mean of 1579 Hz , whereas the velarized Catalan/I/ F2 frequency varies between 874 Hz and 1039 Hz . Therefore, when /I/ was produced with a velar property (Catalan dark/I/), the F2 frequency was much lower than when it was produced without it (French clear/I/). Besides that, Ladefoged and Maddieson (1996) also state that the F2 frequency of the velarized [t] varies between 900 and 1000 Hz , depending on the dialect and language, due to the constriction made by the retraction of tongue-body towards the velum.

Concerning the acoustic relationship between /w/ and /I/, Dalston (1975) demonstrated that they are distinguishable on the basis of their temporal and spectral acoustic characteristics. His findings show that /I/ has longer steady-state duration than $/ \mathrm{w} /$, and he claims that whereas the tongue is in resting position for $/ \mathrm{w} /$, there is contact between it and the alveolar ridge for / //, resulting in gesture delay. Thus, it is hypothesized that the duration of the phoneme /I/ will vary according to its realization. The more marked the production in terms of articulatory gestures, the longer the duration will be. Thus, the vocalized production would have a shorter duration than the non-vocalized production, since the former is produced with a single lingual gesture, whereas the latter is the result of two gestures.

Concerning formant frequencies, the same author claims that the F2 may differentiate the phoneme/I/from the phoneme $/ \mathrm{w} /$ due to the fact that the former has a higher F2 frequency than the latter (1179 Hz vs. 732 Hz for males, 1340 Hz vs. 799 Hz for females). However, it is important to highlight that these results only refer to the phoneme/I/ in onset position. Moreover, Dalston takes into account Peterson's (1961) suggestion that equivalent vowels produced by different speakers tend to lie along lines of constant frequency ratio; then, in order to normalize individual differences, the phonemes $/ \mathrm{w} /$ and $/ \mathrm{I} /$ were rationalized by dividing the second and the third formant frequency values by the frequency value of the first formant. The ratios obtained for both male and female phonemes $/ \mathrm{W} /$ and $/ \mathrm{I} /$ are displayed in Table 1 below:

Table 1
Ratios of formant frequency means based on Dalston's (1975) data

	/w/ male	/I/ male	/w/ female	/I/ female
F2/F1*	2.17	3.42	2.37	3.67
F3/F1*	6.81	7.33	8.21	8.04

*Its important to highlight that the results refer to the phonemes in syllable onset position

Besides that, in an analysis of data from several American English speakers, Ladefoged and Maddieson (1996) found that the dark /I/ and the /w/ have similar formant frequencies, as can be seen in Table 2:

Table 2
Formant frequencies of the dark /I/ and the /w/

	Contexts "aw" and "al"		Contexts "ow" and "ol"	
	$/ \mathrm{w} /$	$/ \mathrm{I} /$	$/ \mathrm{w} /$	$/ \mathrm{I}$
F1	545	510	410	405
F2	850	870	740	770
Ratio F2/F1	1.55	1.70	1.80	1.90

In a study about the phonetic-acoustic properties of the BP liquids, Silva (1997) analyzed the final/I/ productions of a male informant and concluded that he produced a phone which could be characterized as between velarized and vocalized, with the vocalic gesture, but without the consonantal one. As for the formant frequencies, the results showed an F1 frequency mean of 340 Hz and an F2 frequency mean of 829 Hz . Consequently, if the F2/F1 ratio were calculated, the result would be 2.44 . Furthermore, according to the information displayed on the Macquarie University homepage, (http://www.ling.mq.edu.au/speech/acoustic/consonants/approxweb.html), the F1 frequency for the glide / w/ varies between 250 and 450 Hz and its F2 frequency varies
between 600 and 850 Hz . Hence, if the ratio between F2:F1 mean were calculated, the result would be 2.07 (F1 mean: $350 \mathrm{~Hz}, \mathrm{~F} 2$ mean: 725 Hz). Besides that, the same homepage brings information about the first formant frequencies of the dark/I/. If the same strategy above were used, then the ratio F2:F1 of the dark /I/ would be 1.67 (F1 mean: 450 Hz, F2 mean: 750 Hz).

Concerning the effects of the realization of the phoneme /I/ in coda position on its syllable peak, Lehiste (1964) claims that the darker its quality is, the lower the syllable peak F2 frequency will be. Lehiste also states that the labialization of the following consonant causes a decrease in the first formant frequencies of its syllable peak. Therefore, the acoustic behavior of the syllable peak would indicate the degree of darkness and vocalization of the phoneme /I/. Table 3 shows the first formant frequencies of the vowel $/ \varepsilon /$ from both English (Ladefoged, 2001) and BP (Rauber, 2006). Thus, it will be possible to compare them with the acoustic behavior of the syllable peak of the present study.

Table 3
English and Brazilian formant frequencies for $/ \varepsilon /$

	F1	F2	F3	F2:F1	F3:F1
English average	550	1770	2490	3.21	4.52
BP male	497	1888	2620	3.79	5.27
BP female	611	2283	2969	3.73	4.85

Although the focus of the present study was not to verify the effects of the following consonant on the acoustic properties of the phoneme/I/, it is useful to
mention that the formant frequencies of the phoneme /// should be lower before labials and velars than before apicals and palatals (Recasens, 1996).

This review of the literature makes it possible to summarize that lingual height affects the frequency of the first formant, in that the higher its position, the lower the first formant frequency, and also that lingual retraction and dorsum rising affect the frequency of the second formant, in that the more retracted and raised the tongue, the lower the second formant frequency. Besides that, researchers agree that labialization causes a decrease in the frequency of the first three formants. Furthermore, the difference between F1 and F2 would be lower for the dark /I/ than for the clear /I/. As for segment duration, the dark /I/ would be longer than the vocalized variety due to the fact that the former is more marked in terms of articulatory gestures. Finally, concerning the effects of different realizations of the phoneme /I/ on its syllable peak, the formant frequencies of the syllable peak would decrease proportionally to the degree of vocalization of the phoneme /I/ that follows it.

CHAPTER 4

METHOD

4.1 Introduction

This study was conducted in order to investigate (a) whether Brazilian EFL learners vocalize the /I/ in the English coda; (b) which contexts following /I/ favor or inhibit its vocalization; (c) whether the realization of different allophones of $/ \mathrm{I} /$ in the English coda reflects directly in their acoustic properties; and finally (d) whether the acoustic properties of the syllable peak are also affected by different allophones of $/ \mathrm{I} /$. In order to achieve the objectives of this study, firstly participants were carefully selected aiming to control for possible intervening variables (e.g., length of instruction, age, and experience abroad). They were then asked to perform the directed speech production test, through which all the data was collected.

4.2 Participants

A group of 20 Brazilian EFL students, 15 females and 5 males, aged between 14 and 22, participated in this research. Thirteen students were enrolled in the $3^{\text {rd }}$ level of the "To the Top" ${ }^{20}$ (TT-3) English course, and 7 students had just completed the level. None of the participants had been abroad. Table 4 shows the participants' background.

[^11]Table 4
Participants' background

Order	Gender	Age	English Course	Status	Length of instruction
01	Female	15	TT-3	enrolled	456 h
02	Female	18	TT-3	enrolled	456 h
03	Female	17	TT-3	enrolled	456 h
04	Female	14	TT-3	enrolled	456 h
05	Female	15	TT-3	enrolled	456 h
06	Female	17	TT-3	enrolled	456 h
07	Female	16	TT-3	enrolled	456 h
08	Female	20	TT-3	completed	513 h
09	Female	22	TT-3	completed	513 h
10	Female	17	TT-3	completed	513 h
11	Male	18	TT-3	completed	513 h
12	Male	18	TT-3	completed	513 h
13	Male	18	TT-3	completed	513 h
14	Male	20	TT-3	completed	513 h
15	Female	15	TT-3	enrolled	456 h
16	Female	15	TT-3	enrolled	456 h
17	Female	15	TT-3	enrolled	456 h
18	Male	16	TT-3	enrolled	456 h
19	Female	15	TT-3	enrolled	456 h
20	Female	15	TT-3	enrolled	456 h

Although the participants differed from one another in terms of length of instruction (7 participants had just completed the course and thus received 513 hours of instruction and 13 participants had received 456 hours of instruction), it was considered that this difference alone would not interfere in their pronunciation performance, since
factors such as different types and amount of input received out of class and the individual differences would work together affecting their pronunciation performance as a whole. In fact, the results showed that the participants' performance was not significantly influenced by length of instruction in all contexts under investigation ($p>$.05). As regards the variable gender, although it directly affects some acoustic properties of $/ \mathrm{I} /$, it was not under investigation in the present study due to the fact that the individual differences were normalized by the strategy of using the ratios of the formants $\mathrm{F} 3 / \mathrm{F} 1$ and $\mathrm{F} 2 / \mathrm{F} 1$ instead of using the raw formant frequencies, as suggested by Peterson (1961, in Dalston, 1975).

4.3 Material

The data was gathered through two instruments, a profile questionnaire and a directed speech production test.

4.3.1 Participants' Profile Questionnaire

The profile questionnaire (see Appendix A) was the basis for selecting the participants to take part in the data collection session. It consisted of questions about biographical information, and was written and answered in Portuguese. Twenty-three potential participants answered the questionnaire. Of these prospective participants, three were eliminated because they did not fulfill the following requisites: (a) participants should be aged between 15 and 25; (b) they should not have experience abroad; (c) they should only speak English as an L2; and (d) they should be enrolled in or have just completed the course "To the Top". Thus 20 participants fulfilled all the requisites above and then were selected as the data collection sample.

4.3.2 Directed Speech Production Test

The directed speech production test, which aimed at eliciting the production of /I/ within the phonological environments selected, consisted of the reading of a carrier sentence displayed on a computer screen in a sequence of slides. Each sentence appeared in one slide to prevent visual preparation for reading the following sentence and the skipping of sentences.

The directed speech production test was divided into three parts: (a) the instructions, (b) the training, and (c) the test itself (Appendix B). The instruction material had slides with instructions in Portuguese about the general task, such as: (a) what the participants would see in the slides and how long the slides would be on screen; (b) what their task would be during the time the slides were on the screen; and (c) information about the training material and the recording procedure.

The training material consisted of 8 slides which aimed at reinforcing understanding of the task as well as raising confidence for the data collection procedures. The first slide provided written instructions about (a) the use of the carrier sentence '*, I said *', and (b) what the participants should do when each slide appeared. It also showed four examples for the participants to practice. The second slide showed written instructions about the desired syllable peak pronunciation, and three examples for the participants to practice. The reason for giving instructions about the pronunciation of the syllable peak was to minimize mispronunciations, that is, the production of tokens which would be invalid for the study. Finally, slides 3 to 8 provided the training by modeling the data collection material and procedure. These slides appeared automatically every 4 seconds, and each showed one of the inputs: felb, mels, melg, tell Gyna, selj and welsh plotted in the center, and the carrier sentence *, I said * plotted on the top left side of the slide. The words mels, melg, tell Gyna, selj were
chosen intentionally due to the fact that the sequences of phones in their rhymes were expected to trigger undesired pronunciation, which could then be worked out in the training session, so that the data collection would not be spoiled. For example, the expected pronunciation for the syllable rhyme of the word mels was [$\varepsilon \nmid z]$, but it could be realized as [عłs]; the rhymes in the words melg, Tell Gyna and selj were expected to be pronounced as [$\varepsilon \nmid g]$, $[\varepsilon \nmid 3]$ and $[\varepsilon \nmid 3]$, respectively, but all of them could be realized as [$\varepsilon \nmid d 3]$. By giving training on the pronunciation of theses words, participants who presented mispronunciations could rehearse and eventually produce the expected sound.

The testing material had 70 slides divided in two sets of 35 . All the slides, except the $35^{\text {th }}$ and the $70^{\text {th }}$, displayed the carrier sentence '*, I said *' on the top left side of the screen, and the target word plotted in the center. The $35^{\text {th }}$ slide displayed the message 'Respire um pouco, aguarde alguns segundos...' (relax and wait for a few seconds) and functioned as a break between the two sets of slides serving for the participants to relax while waiting a few seconds for the following set to begin. The $70^{\text {th }}$ slide signaled the ending of the test with the message 'Thank you! Your contribution is relevant to the development of language research'. In both sets, the first three slides served only as practice stimuli, that is, a warming up. For example, the three introductory slides for the first set brought the words 'bed', 'tell Gyna' and 'get', whereas the three introductory slides for the second set brought the words 'book', 'tell Joe', and 'dog'. The 64 valid slides displayed words with $/ \mathrm{I} /$ in the coda preceded by the phoneme $/ \varepsilon /$, and followed either by silence or by one of the following consonants: $/ \mathrm{p} /, / \mathrm{b} /, / \mathrm{t} /, \mathrm{d} / \mathrm{l} / \mathrm{k} /$, $/ \mathrm{g} /, / \mathrm{f} / \mathrm{l} / \mathrm{v} /, / \mathrm{s} /, / \mathrm{z} /, / \mathrm{S} /, / \mathrm{s} /, / \mathrm{m} /$ or $/ \mathrm{n} /$. These sounds appeared either within the target word or in the onset position of the next word.

The words used in the test were (a) bell, sell and shell for /I/ followed by silence. In this condition, twelve tokens of final /l/ were produced by each participant (3 words repeated twice in the carrier sentence, each slide repeated twice); (b) help, felb, helm, self, selv, melt, held, heln, else, mels, welsh, selj, belk and melg, for /I/ followed by one of the consonants above within the word. Fifty-six tokens were produced in this condition (14 different contexts repeated twice through the carrier sentence which appeared in 2 slides); and (c) the sequences tell Peter, tell Bob, tell Mary, tell Faby, tell Viny, tell Tom, tell Dan, tell Nan, tell Sam, tell Zak, tell Sharon, tell Gyna, tell Kate and tell Garry, for /I/ followed by one of the consonants above in the onset of the following word. Another fifty-six tokens were produced by each participant in this condition (14 different contexts repeated twice through the carrier sentence, which appeared in 2 slides). The order of presentation of the words on the slides was counterbalanced across the two sets of slides (Appendix B).

As it was mentioned above, the study involved some non-words. It was necessary to make up words in order to cover the phonological contexts under investigation. The words heln, mels, selv, selj, felb, belk and melg included in this study are not found in major dictionaries of English, and so, are not part of the language lexicon; however, they do not go against the phonotactic rules of the English rhyme, which allows nasals, fricatives and stops following /I/, hence they might be English words.

It seems reasonable to say that the carrier sentence '*, I said *.' was a sensible choice due to the fact that the punctuation mark inserted just after the target words would stimulate pauses, one of the phonological contexts of study, avoiding, or at least, minimizing undesired phenomena such as coarticulation, assimilation and linking.

Concerning the choice for $/ \varepsilon /$ as the syllable peak, it was due to the fact that it is the most frequent syllable nucleus found in monosyllabic English words with the coda cluster $/ \mathrm{I} /+\mathrm{C}^{21}$ as can be checked in major dictionaries. Secondly, it was necessary to maintain the syllable nucleus stable to control for the effect of the preceding context on $/ \mathrm{I} /$, and study the effect of the following context with the desired accuracy.

The following context was studied in terms of the effect of the consonantal phonemes $/ \mathrm{p} /, / \mathrm{b} /, / \mathrm{t} /, / \mathrm{d} /, / \mathrm{k} /, / \mathrm{g} /, / \mathrm{f} /, / \mathrm{v} /, / \mathrm{s} /, / \mathrm{z} /, / \mathrm{S} /, / \mathrm{s} /, / \mathrm{m} /$ and $/ \mathrm{n} /$ in favoring vocalization of $/ \mathrm{I} /$. This effect was analyzed in terms of voicing, place and manner of articulation of the consonantal phoneme. As for place of articulation, the consonantal phonemes studied were the bilabials (/p/, /b/,/m/), labialdentals (/f/, $/ \mathrm{v} /$), alveolars $(/ \mathrm{t} /, / \mathrm{d} /, / \mathrm{s} /, / \mathrm{z} /, / \mathrm{n} /$), postalveolars $(/ \mathrm{S} /, / \mathrm{z} /$), and velars $(/ \mathrm{k} /$, $/ \mathrm{g} /$). The interdentals ($/ \theta /$, $/ \partial /$) were not included in this study due to the fact that they do not exist in BP and are often difficult for BP learners of English, who realize them as $/ \mathrm{t} /$, /s/ or /f//, and as /d/ or /z/, respectively (Baptista, 2001; Koerich, 2002; Xavier, 1989). Concerning manner of articulation, the consonantal phonemes were contrasted in terms of plosives $(/ \mathrm{p} /, / \mathrm{b} /, / \mathrm{t} /, / \mathrm{d} /, / \mathrm{k} /, / \mathrm{g} /$), nasals $(/ \mathrm{m} /$, $/ \mathrm{n} /$), and fricatives $(/ \mathrm{f} /, / \mathrm{v} /, / \mathrm{s} /, / \mathrm{z} /, / \mathrm{S} /, / \mathrm{z} /)$. The affricates $(/ \mathrm{t} \mathrm{f} /, / \mathrm{d} 3 /)$ were not included in this study, although they can follow the phoneme/I/ in English coda clusters. The reason for leaving the affricates out was agreement with Ladefoged

[^12](2005) who considers them as resulting from combinations of a stop followed by a fricative. Since this study already covered the alveolar stops $/ \mathrm{t} /$ and $/ \mathrm{d} /$, it was considered that the affricates would affect the preceding /I/ in a similar way the alveolar stops would do. Besides that, the rhymes / $\varepsilon \mathrm{lt} \int /$ and $/ \varepsilon \mathrm{ld} 3 /$ are hardly found in English monosyllabic words.

4.4 Procedures

Concerning the participants who were enrolled in the English course and volunteered to take part in the experiment, the data was collected at the language school during their regular classes. As regards the participants who had just completed the course, individual meetings were scheduled at the language school they had studied. The data was collected in individual sessions, in a silent classroom in order to prevent background noise interference on the recordings.

4.4.1 Data collection session

First, each participant answered the profile questionnaire in Portuguese and handed it in to the researcher (Appendix A). Following that, the participant was invited to sit comfortably in front of a compact personal computer in order to take the directed speech production test (Appendix B).

The slide containing the instructions material was read aloud and explained by the researcher. Basically, the participant was told that a slide containing a word or a sequence of two words and the sentence '*, I said *' would appear on the computer screen every 4 seconds. The participant was also told that the location of the word or
group of two words would be about the slide's center, and the carrier sentence would be located on top left side of the slide.

The first slide of the training material was then shown and the details about it were explained by the researcher in Portuguese. During the presentation of the four examples in the slide the participant was told that the task consisted of inserting the word or the phrase (two words) in the asterisk spot in the sentence, and reading it as naturally as possible as if it was part of informal conversation. Following the presentation of the first slide, the participant was given the opportunity to practice. Once the basic task had been understood, the second slide was shown, and the participant was told that the pronunciation of the vowel in the syllable peak of the word or phrase (two words) would be $/ \varepsilon /$, in all words, and the words were practiced through the three examples in the slide. Once the task was understood, the participant was told that the subsequent six slides would run automatically and that this presentation would be a model of the test. The third slide was then shown and every 4 seconds a different slide appeared and the participant said the carrier sentence inserting the word or phrase (two words) in the asterisk spot. Whenever the participant was judged by the researcher to have produced an undesired pronunciation in terms of the consonant that followed $/ \mathrm{I} /$, s / he was told about the expected sound and had the chance to practice by repeating slides 3 to 8 .

After finishing the training session, the test was run without interruption, and the productions were digitally recorded at a sampling frequency of 44 kHz on a Sony Minidisc MZ - R 700. The choice of this specific sampling frequency for recording was due to the fact that it is a sufficient frequency to conduct a consistent acoustical analysis of any speech sound. In fact, just half of it would be adequate since the main components of speech sounds lie under 10 kHz (Johnson, 2003).

4.4.2 Data analysis

The participants profile questionnaire provided information to guarantee the homogeneity of the group, except for the variable gender. However, the participant's gender was not a variable under investigation in the present study although the formant frequencies are proportionally affected according to the individual differences in the vocal tract. The reason for not considering gender as a variable of effect is due to the fact that the individual differences in the vocal tract were minimized by the strategy of using the ratios of the formants $\mathrm{F} 3 / \mathrm{F} 1$ and $\mathrm{F} 2 / \mathrm{F} 1$. The procedures of the acoustic analysis are described in Section 4.2.2.

The directed speech production test provided the information that was used to investigate the influence of the following context on the production of different realizations of /I/ in the English coda. Besides that, once different realizations of /I/ in the English coda were produced by the participants, the main acoustic properties characterizing them were investigated.

In order to make the necessary analysis, the data had to be specially treated. First, each participant's recording was downloaded to a file of the type '.wav'. Each file was labeled with characters that identified the participant's number and the gender. Then, each file was open using the software Pratt ${ }^{22}$ version 4.4.12. After that, the Praat function 'annotate to TextGrid' was run and the TextGrid ${ }^{23}$ was set with 4 tiers and saved with the same name of the '.wav' file, but with an extension '.TextGrid'. Finally, both the '.wav' and the '.TextGrid' files were selected and edited. Figure 6 shows a participant's Praat window with the TextGrid segmented and labeled.

[^13]

Figure 6: Praat window

The window shows the sound wave, the spectrogram and the TextGrid of the utterance 'tell Bob' produced by a participant. The sound wave shows the wave form properties such as duration, the glottal pulses, and the intensity, which is the contour of the wave form. The spectrogram was set to show the frequencies that lie within the first 5 kHz , thus it was possible to analyze the main acoustic properties of the phonological contexts under investigation. It also shows the first 5 formant contours (red dots) and their intensity (the darkest is the formant contour, the highest is their intensity). The TextGrid contains 4 tiers. Boundaries were inserted and manually labeled in each tier. The boundary locations were determined visually with the aid of the spectrogram and sound wave.

As for the first tier, boundaries were inserted to segment the sound wave in order to keep the target sound (the word or words under investigation) within them. Then the segments were labeled with a number referring to a code of the context under investigation plus the target word(s). Concerning the second tier, the boundaries were inserted in order to mark the beginning of the peak $[\varepsilon]$, and the end of the phone $[I]$.

Then, they were also labeled with a number referring to the code of the context under investigation plus a symbol which is a code that refers to the allophone of $/ \mathrm{I} /$ produced. For example, in the label '5_Lw', the number 5 referred to the final /I/ followed by /b/ in onset position in 'tell Bob', and the code Lw identified the realization of /I/ as a labialized (w) lateral (L). As for the third tier, it was labeled exactly the same way as the second tier but the boundaries segmented the sound wave in order to keep only the steady state of the phoneme /I/ within them. Finally, the last tier boundaries were labeled with any relevant information about the production. In Figure 5, for example, the fourth tier label is " 5 -VOT", referring to the negative Voice Onset Time of /b/ that occurred within that period in the sequence 'tell Bob'.

4.4.2.1 Participants' productions assessment

In order to make a well-balanced judgment of the participants' productions of /I/ in the English coda, and thus label the tiers 2 to 4, the researcher took the following steps: (a) listening to the stretch of the sound wave which encompassed the target word or the group of target words repeatedly in order to decide what sound was produced for the /I/ in the English coda. This stretch of the sound wave was kept within the boundaries in tier number 1 of the TextGrid; (b) listening to the stretch of the sound wave which encompassed the beginning of the syllable peak plus the end of the $/ \mathrm{I} /$ in order to confirm the decision made in step (a). This stretch of the sound wave was kept within the boundaries in tier number 2 of the TextGrid; (c) checking out the acoustic properties of the participants' production of the $/ \mathrm{I} /$ in the English coda in order to
reinforce the decisions made in steps (a) and (b), by analyzing the spectrogram and spectrum extracted from the stretch of sound wave which encompassed the steady state of the phoneme $/ \mathrm{I} /$. This stretch of sound wave was kept within the boundaries in tier number 3 of the TextGrid; and finally, (d) labeling tiers 2 to 4 with a symbol that expressed the final decision about the phone produced for the /I/ in the English coda.

The acoustic analysis (step (c), above), which helped the researcher to decide which sound the participants produced for /I/ in the English coda, focused on the acoustic clues that would indicate: (a) the presence or absence of lip rounding, which would indicate vocalization; (b) the presence or absence of a consonantal gesture, which would indicate that the phoneme carried a feature belonging to liquids; and (c) the presence or absence of nasal formants, which would denote nasalization..

As for the focus on lip rounding clues, first an acoustic pattern was drawn for each allophone of /I/ the participant produced by analyzing the spectrograms and first formants frequencies ${ }^{24}$. This acoustic pattern was drawn for each participant individually due to the individual differences that may reflect in the acoustic properties. Then, the first three formants frequencies of each realization of $/ \mathrm{I} /$ in the coda were compared with the acoustic pattern drawn for that participant. Then, in the light of the pertinent literature, which states that a decrease in the first formant frequencies would denote lip rounding (Stevens, 1997), those productions of /I/ whose first formant frequencies were lower than the pattern drawn were assessed as having lip-rounding and consequently vocalization was identified.

[^14]Concerning the focus on the acoustic clues that would denounce consonantal gesture, the spectrogram was also visually checked in order to verify the amplitude behavior ${ }^{25}$ around the third formant area. The existence of a consonantal gesture would be responsible for an amplitude decrease due to the greater obstruction a consonantal gesture causes in the vocal tract when compared to a glide or back vowel (Stevens, 1997). Besides the visual checking of the spectrogram, the spectrum slice ${ }^{26}$ from a period within which the coda /I/ lies was also analyzed. The analysis of the spectrum would facilitate tracking the formants in terms of amplitude and frequency. For example, Figure 7, below compares the spectra of two different realizations of $/ \mathrm{I} /$. Spectrum 'A' refers to the /I/ judged to be realized with a consonantal gesture, but with the absence of lip rounding. Spectrum ' B ' refers to the /I/ judged to be realized as a back vowel, with lip rounding.

Figure 7: Spectra of /I/ realized as a liquid consonant (A) and as a back vowel (B)

Some features in spectrum ' A ' when compared to spectrum ' B ' would reveal characteristics that belong to the consonantal gesture of the lateral /I/. First, spectrum

[^15]' A ' is rather flatter around the third formant area, that is, the array of resonance is not well defined. Second, the amplitude is lower; and third, there are some irregular polezeros ${ }^{27}$ at high frequencies (4000 to 5000 Hz). According to the literature, these features are due to the presence of the consonantal gesture of liquids, which constricts the airflow causing a decrease in amplitude and creates multiple acoustic paths around the constriction causing pole-zeros (Stevens, 1997; Zhang \& Espy-Wilson, 2004).

Moreover, in the researcher's auditory judgment of the participants' productions of /I/ in the English coda it was concluded that most of the productions were nasalized when /I/ was followed by a nasal segment, maybe due to coarticulation. Thus, in order to confirm this judgment the spectrogram and the spectrum extracted from the stretch of sound wave which encompassed the steady state of the phoneme /I/ were analyzed aiming to check the presence of a nasal formant ${ }^{28}$ which would denote nasalization.

However, sometimes the decision taken according to the procedure in one step was refuted by the following one. In such cases, the researcher asked for a second opinion from a listener with experience in phonetic transcription. This person was not aware of the researcher's decision, and assessed the production through the listening of the sound wave stretch encompassing the target word or the group of target words, which was kept within the boundaries in tier number 1. In case of agreement with the researcher's decision made in step (a), that was accepted. In case of disagreement, the second listener was told about the researcher's decision and then both listeners listened repeatedly to the stretch of the sound wave in question, kept within the boundaries in tier number 1, with special attention to (a) the presence of a consonantal gesture, which would be denounced by the characteristic sound produced by the tongue contact with

[^16]the alveolar ridge area during the realization of laterals; (b) the presence of lip rounding, which would be denounced by the characteristic sound produced by lip rounding during back vowels realization; and (c) the presence of the nasal feature, which would also be denounced by its characteristic sound. Both judges highlighted the articulatory clues present in the stretch of sound in question to support their judgment and together decided whether the production would be valid or treated as a missing value.

After the judgment decision, the TextGrid's tiers 2 to 4 were labeled with the following codes, which represented the participant production for the /I/ in the English coda: (a) "L", when the most salient gesture was consonantal whereas the lip rounding gesture was absent, which means that the production was not considered to be vocalized; (b) "Lwo" or "Lw" ${ }^{29}$, when there was indication of the presence of both the consonantal gesture and of the lip rounding gesture, which means that the production was considered to be partially vocalized; (c) "W" or "Wo"30 , when the most salient gesture was lip rounding whereas the consonantal gesture was absent, which means that the production was considered to be completely vocalized; and (d) " N ", when / // was classified as having nasal features. Furthermore, when the decision considered the production as having any other features than the ones above, the tiers were labeled with other codes (see Appendix C for the complete list of codes) and those tokens were considered as missing values in the result analysis.

4.4.2.2 Acoustic procedures

This section describes the strategies used to treat the data in order to extract the acoustic features used to investigate the hypotheses related to the research question 7,

[^17]which was concerned with the acoustic features of duration and the first three formant frequencies mean.

4.4.2.2.1 - Extraction of acoustic features

Figure 8 displays a Praat window with the waveform, the spectrogram and the labeled TextGrid referring to the segment 'tell Bob' produced by one of the participants. It is important to highlight that the acoustic analyses were conducted on the speech signal interval lying within the labeled boundaries in tier 2, which encompasses the very beginning of the peak $(/ \varepsilon /)$ and the very end of the phoneme $/ \mathrm{I} /$ (Figure 8, see totalinterval). In order to define the location of these boundaries, and hence the start point of the peak $(/ \varepsilon /)$ and the end point of the phoneme /I/ (total-interval), both the waveform and spectrogram were considered, with special focus on amplitude and formants steady state.

Figure 8: Praat window

For example, the end point of the total-interval in Figure 7 was set at the end of the amplitude decrease of the waveform as well as at the end of the formants steady state in the spectrogram. On the other hand, the start point was set at the beginning of the formants steady state in the spectrogram, around the beginning of the increase of the waveform amplitude.

However, the information extracted from the total-interval only enabled me to test the hypothesis related to the duration of the syllable peak and the phoneme /I/, which stated that the mean of the duration measured from the syllable peak beginning to the /I/ end would be significantly different according to each realization of /I/. In order to test the hypotheses concerning the F3/F1 and F2/F1 ratios of the peak and the phoneme /I/, two individual intervals had to be established within the total interval: (a) the peakinterval and (b) the L-interval. In order to accomplish that, it was decided to divide the total-interval in 100 equal points, and it was established that the peak-interval duration would be equal to 15 points $(15 / 100)$, the $5^{\text {th }}$ point being its start point and the $20^{\text {th }}$ point its end point and the L-interval would be equal to 35 points ($35 / 100$), the $65^{\text {th }}$ point being its start point and the $100^{\text {th }}$ point its end point. In other words, the peak-interval duration would lie within the first 20% of the total-duration, leaving out the first 5%, in order to minimize the onset effect on the peak and the L-interval duration would lie within the last 35% of the total-duration. This strategy minimized the individual differences in terms of speech speed, that is, the longer the total-interval duration was, the longer the peak-interval and the L-interval durations would be.

Furthermore, it is also necessary to clarify that the choice for these specific proportions for the peak-interval and for the L-interval in relation to the total-interval was made after analyzing a great number of the participants' spectrograms at random. It
was observed that both the syllable peak and the /I/ formants steady state lay within 15% and 35%, respectively.

After setting the peak-interval and the L-interval, the first three formants means were measured by applying the Burg algorithm (Anderson, 1978) built into Praat to calculate the LPC spectra. The number of formants per frame was set as 5 and the maximum frequency of the signal was defined as 5 kHz for male and 5.5 kHz for female speakers due to the differences in their vocal tract shapes. That is, the calculation would consider the five most prominent frequencies lying within the maximum frequency of the signal. Also, the window length was set at 0.025 seconds, and an inverted low-pass filter with a slope of +6 dB per octave from 50 Hz was applied in order to enhance the frequencies in 6 dB per octave counting from 50 Hz .

4.4.2.3 Operationalization of variables and statistical treatment

The variables under investigation were extracted from Praat by running a script written specifically for this research (Appendix L). Basically, the script extracted all the nominal independent variables, transforming them into numbers, in order to facilitate the statistical analysis. For the dependent variables, the script did all the necessary calculations, and extracted the intended values. However, due to the fact that the aim of this research was not to investigate accuracy, but vocalization of /I/ considering the effect of the following phonological context, the decision was made to grade the participants' productions according to the degree of vocalization of $/ \mathrm{l} /$. Thus, the nominal variable, "participants' production of the phoneme /I/" with several levels concerning to the phones participants produced for $/ \mathrm{I} /$, served as the basis for the creation of a new interval variable. The strategies used to create it were the following:
(a) the productions which were analyzed as having only lip-rounding with no consonantal gesture (labeled as W or Wo) were considered as totally vocalized and were attributed grade 10 (ten); (b) the productions which were analyzed as having both a consonantal gesture and lip-rounding (labeled as Lw and Lwo) were classified as partially-vocalized and attributed grade 5 (five); (c) the productions analyzed as having only the typical lateral consonantal gesture (labeled as L) were classified as notvocalized and attributed grade 0 (zero); and (d) all the other productions were considered as missing values. The difference between the labels W or w and Wo or wo, refers to the vowel-like quality of the vocalization, the label W or w being more like a /u/ and the label Wo or wo more like a /o/. That is, the productions that were assigned those labels were analyzed as being vocalized, either totally or partially, but the quality of vocalization was different according to the label. However, vocalization quality was not the aim of the present study and hence it was not considered. The strategy of attributing grades to the productions according to their degree of vocalization enabled the analysis of the effect of the following phonological context in favoring /I/ vocalization.

It is important to highlight that the productions which were analyzed as having a nasal feature (identified by an N added to the regular label) were acknowledged during the analysis of the results despite being treated as missing value.

For more details on the operationalization of the variables, see the list of dependent and independent variables in Appendix D.

As for the statistical treatment, the techniques used to address the research questions and hypotheses of the study were performed using the software SPSS for Windows 10.0. Due to the fact that the data was not well distributed, the statistical analyses were based on comparing ranks either by running (a) the Friedman test, (b) the

Wilcoxon signed-rank test; (c) the Kruskal-Wallis H test; or (d) the Mann-Whitney U test. The probability level of statistical significance (alpha level) was set at . 05 . Although it was decided to be conservative in choosing the statistical tests, if the data was analyzed by running Anova tests the results would be similar in terms of statistical significance, maybe due to the large scope of data.

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Introduction

This chapter reports and discusses the results of the investigations on (1) How Brazilian EFL learners produce /I/ in the English coda; (2) the influence of the following phonological environment in favoring/inhibiting / // vocalization; and (3) the effect of different realizations of /I/ on the acoustic properties of the syllable rhyme.

5.2 How Brazilian EFL learners produce /I/ in the English coda

It seems useful to begin this section reinforcing the definitions adopted for consonantal and vocalic gestures since the results are discussed in terms of their presence or absence. In this study, the consonantal gesture refers to a gesture which involves the tongue tip or blade contact with the dental/alveolar area, as the most salient gesture of the clear /I/ in the onset of lip [IIp], whereas the vocalic gesture refers to a gesture which carries traces of tongue retraction and lip-rounding, as the glide $/ \mathrm{w} /$ in the coda of the Brazilian word mel [mew] - 'honey'.

The results displayed in Table 5 confirm the hypothesis that Brazilian EFL learners present different realizations for /I/ in the English coda. Five realizations of
/I/ were identified: 'L', 'Lwo', 'Lw', 'Wo' and 'W'.

Table 5
/// realizations by Brazilian EFL learners

Realizations	Frequency	Valid Rate	Recoding	Frequency	Valid Rate
'L'	57	2.7%	'L'	57	2.7%
'Lwo'	819	38.4%			
'Lw'	500	23.4%	'Lw'	1319	61.8%
'Wo'	571	26.8%			
'W'	187	8.8%	'W'	758	35.5%
Total	2134	100.0%		2,134	100.0%
Missing values	346				
Total	2480				

The participants' performance in the 'direct speech production test' resulted in 2,134 valid productions encompassing 5 distinct realizations of /I/: 'L', 'Lwo', 'Lw', 'Wo' and W. The least frequent occurrence was the realization of /I/ encoded as 'L' (57-2.7\%). This realization was characterized by the presence of the consonantal gesture only, thus realizations of this type were considered non-vocalized productions. Although this production is the one which most approximates the dark $/ \mathrm{I} /$, it is important to highlight that realizations of this type do not necessarily characterize English native-like productions, since this study did not apply such judgment. Thus, the realizations of /I/ coded as ' L ' refer to non-vocalized productions, which are mainly characterized by the presence of the consonantal gesture and the absence of liprounding. There was a low rate of occurrence of this type of realization (about 3\%).

A second type of realization encompasses the realizations of /I/ classified as partially vocalized, which means they are characterized by the presence of both the consonantal and the vocalic gestures. These realizations of /I/ were encoded either as
'Lwo', when the vocalic gesture carried a similar quality of an $/ \mathrm{o} /$, or ' Lw ', when the vocalic gesture carried a similar quality of an $/ \mathrm{u} /$, the former being the one with greater frequency of occurrence. However, it was decided to unify these realizations by recoding them as ' Lw ' due to the fact that the vocalic quality of /I/ vocalization was not in question in the analysis. Thus, the unification of the results showed that the participants partially vocalized the $/ \mathrm{I} /$ in the English coda in about 60% of the productions (1319 out of 2134).

A third type of the realization of /I/ concerns the productions with traces of the vocalic gesture exclusively. These realizations were classified as completely vocalized productions and were encoded either as 'Wo' or 'W', according to their vocalic quality. However, as it occurred with the partially vocalized productions, the re-codification, grouping the two realizations together resulted in 758 productions classified as 'W', which represents about one-third of the total productions (35.5\%).

5.2.1 The results in light of the literature

According to the arrangement of the data described above, the participants of this study produced the $/ \mathrm{I} /$ in the English coda in three main distinct ways: (a) completely vocalized ('W'); (b) partially vocalized ('Lw'); and (c) non-vocalized ('L') at all.

As figure 9 shows, the productions were more frequently partially vocalized (Lw) than completely vocalized (W); whereas the rate of occurrence of non-vocalized productions (L) was really low.

Figure 9: Different productions of /I/ in the English coda

At first sight, it may be argued that the participants of the present study transferred the BP /I/ to produce the /// in the English coda since both vocalized and partially vocalized /I/ occurs in BP. As mentioned in section 2.2 , the BP /I/ in coda position is most frequently realized with the vocalic quality of a back vowel or the glide /w/ (Lamprecht, 2004; Netto, 2001; Tasca, 2002), and in the extreme south, on the border of Brazil and Uruguay, it is sometimes realized with the hybrid features of velarization and labialization $\left[\dagger^{\mathrm{w}}\right]$ (Espiga, 2003). The results also corroborate Moore (2004) and Baratieri (2005) whose studies indicated that the transferring of the BP sound seems to be the strategy the English learners use to produce the English final /I/.

However, as mentioned in section 2.3, the phenomenon of /I/ vocalization that occurred in BP (Cristófaro Silva, 2002; Espiga, 2003; Lamprecht, 2004; Netto, 2001; Tasca, 2002) as well as in many Romance Languages (Recasens, 1996), and in some dialects of English (Johnson \& Britain, 2003), seems to be a change in the direction of the less marked. That is, the clear /I/ evolves to the dark [\dagger] which evolves to the partially vocalized $\left[\dagger^{\mathrm{w}}\right]$ which, finally, evolves to the vocalized variety $/ \mathrm{w} /$.

From this picture, it seems tempting to presume that the participants of this research are tracking the opposite direction, from the less marked (/w/) to the more market $([\dagger])$. This supposition is grounded on the results which show that more than half of the productions were partially vocalized ('Lw'), which, in my point of view, may depict interlanguage development rather than native language transfer, due to the fact that the latter would enhance the production of vocalized /I/ ('W'). The higher rate of occurrence of partially vocalized productions ('Lw') may be due to the participants' effort to produce a more native-like English /I/. That is, it seems that whereas speakers of English varieties which have the clear/dark /I/ dichotomy (e.g., GA and RP) are in the track of disconnecting the consonantal feature of the dark /I/, thus producing a less marked vocalized variety, the BP EFL learners in this study seem to be attaching the consonantal gesture to the less marked vocalized BP /I/ in an effort to produce a more native-like English dark /I/. But they fail to accomplish this goal completely due to the fact that the vocalic gesture of lip-rounding remains intact.

Figure 10: Supposition of the evolution of the phoneme /// in coda position

Figure 10 displays the direction of the development of /// in coda position by RP and GA English speakers who have the clear/dark /I/ dichotomy and the supposed
opposite direction the participants of this research are tracking. The query that may be raised concerns the reasons why the participants of this research are tracking in direction of the more marked sound rather than transferring the less marked native language sound. I would assume that the fact they received a great length of instruction by means of the audio-visual method in which most of the input they received consisted of Standard English has triggered the arising of the consonantal gesture of the dark /I/.

5.3 The influence of the following phonological environment

One of the motivations to carry out this study was the scarcity of literature on the effects of the phonological environment following the /I/ in the English coda. This section presents the results of this investigation in order to verify whether different phonological environments affect the productions of /I/. Each phonological environment and the hypotheses related to the investigation of its effect are discussed separately in the following sub-sections.

5.3.1 Pause, consonant within the word and consonant across the word

The research question concerning the effect of different phonological environments was: 'does the following phonological environment in terms of (a) a pause, (b) a consonant within the word, or (c) a consonant across the word influence the vocalization of $/ I /$ in the English coda?' It was hypothesized that the degree of vocalization of /I/ would vary according to the following phonological environment. Table 6 presents the results of this investigation.

Table 6
/I/ vocalization in the phonological environments: a pause, a consonant within the word and a consonant across the word

	Realizations of /l/ in different phonological environments														
	Followed by a pause					Followed by a consonant within the word					Followed by a consonant across the word				
	N	'L'	'Lw'	'W'	G^{31}	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G
1	12	--	12		5.00	53	--	48	5	5.47	56	--	35	21	6.88
2	8	1	3	4	6.88	42	--	23	19	7.26	44	--	24	20	7.27
3	12	4	7	1	3.75	45	5	33	7	5.22	53	1	47	5	5.38
4	12	--	11	1	5.42	48	--	40	8	5.83	54	--	29	25	7.31
5	12	--	6	6	7.50	44	--	26	18	7.05	56	--	35	21	6.88
6	12	--	9	3	6.25	46	--	29	17	6.85	48	--	12	36	8.75
7	12	3	6	3	5.00	40	5	29	6	5.13	49	23	26	--	2.65
8	12	1	11		4.58	44	3	38	3	5.00	53	--	40	13	6.23
9	12	--	10	2	5.83	41	1	36	4	5.37	52	--	48	4	5.38
10	12	--	--	12	10.00	46	--	27	19	7.07	56	1	39	16	6.34
11	12	1	4	7	7.50	47	2	34	11	5.96	43	1	32	10	6.05
12	12	--	6	6	7.50	40	1	27	12	6.38	50	--	35	15	6.50
13	12	--	3	9	8.75	41	--	29	12	6.46	47	--	15	32	8.40
14	12	--	4	8	8.33	51	3	28	20	6.67	55	--	16	39	8.55
15	12	--	--	12	10.00	41	--	12	29	8.54	52	--	24	28	7.69
16	10	--	7	3	6.50	41	--	40	1	5.12	52	--	42	10	5.96
17	12	--	1	11	9.58	48	--	31	17	6.77	52	--	20	32	8.08
18	12	1	2	9	8.33	39	--	21	18	7.31	48	--	17	31	8.23
19	12	--	4	7	6.67	42	--	35	7	5.83	47	--	21	26	7.77
20	11	--	8	4	8.18	45	--	36	9	6.00	50	--	26	24	7.40
Total	233	11	114	108		884	20	622	242		1017	26	583	408	
\%	100.0	4.7	48.9	46.4		100.0	2.3	70.4	27.4		100.0	2.6	57.3	40.1	
Grade Median					7.19					6.19					7.08
Grade Minimum					3.75					5.00					2.65
Grade Maximum					10.00					8.54					8.75

Grade ($\mathrm{L}=0, \mathrm{Lw}=5$ and $\mathrm{W}=10$) - - Number of production (NP)
$\mathrm{G}=(\mathrm{NP} \times \mathrm{L}$ ' * grade ' L ') + (NP ' Lw ' * grade ' Lw ') + (NP ' W ' * grade ' W ') / N

As can be seen, the /I/ was most vocalized when the following phonological environment was a pause $($ Median $=7.19)$; then, when it was a consonant across the word $($ Median $=7.08)$, and least, when it was a consonant within the word $($ Median $=$ 6.19).

[^18]The Friedman statistical test showed that the difference between the phonological environments was significant $\left(\mathrm{X}^{2}(2, \mathrm{~N}=20)=6.100, p<.05\right)$. Thus, the Wilcoxon Signed Ranks Test was run in order to verify whether the differences between the pairs of phonological environments were significant. The test yielded the following results: (a) for the pair 'pause' vs. 'consonant across the word' the difference was not significant ($\mathrm{Z}=-.448, \mathrm{p}>.05$); (b) for the pair 'pause' vs. 'consonant within the word' the difference was significant $(\mathrm{Z}=-2.464, \mathrm{p}<.05)$; and (c) for the pair 'consonant within the word' vs. 'consonant across the word' the difference was also significant (Z $=-2.352, \mathrm{p}<.05)$.

Thus, the hypothesis that the degree of vocalization of /I/ would vary according to the following phonological environment was only partially supported due to the following: (a) although the degree of /I/ vocalization in the phonological environment 'pause' was higher than in the phonological environment 'consonant across the word', the difference between them was not significant; (b) the degree of I/ vocalization in the phonological environment 'consonant within the word' was significantly lower than in the phonological environments 'pause', and in 'consonant across the word', which means that both 'pause' and 'consonant across the word' triggered significantly more /I/ vocalization than the phonological environment 'consonant within the word'.

5.3.1.1 The results in light of the literature

The findings of the present study seem to give support to Baptista's (2001) observation that Brazilians tend to vocalize the English final /I/. Furthermore, they corroborate the traditional belief that /I/ vocalization is favored in prepausal position
(Straka, 1968; Grammont, 1971; Ohala \& Kawasaki, 1984; Hartcastle \& Barry, 1985, all cited in Recasens, 1996), as mentioned in section 2.4. However, the results do not account for what happens in a considerable number of Romance dialects, in which dark /I/ vocalization is more frequent before coronals (dental and alveolar stops, fricatives, and affricates) than before labials, velars and pause (Recasens, 1996).

Concerning English /I/ vocalization by BP learners of English, the results of the present investigation do not corroborate the tendencies found in previous studies (Baratieri, 2005; Moore, 2004). In Moore's study, vocalization was more frequently favored when /I/ was followed by a consonant across the word than by a pause, and in Baratieri's study it was more frequently favored when the following consonant was within the word than across the word. It seems important to note that the present study accounted for some limitations of the previous ones, such as (a) the small number of tokens, (b) the lack of statistical tests, and (c) the lack of control of the previous and following phonological environments, that may have affected the results in those studies. In both studies the number of tokens was very limited and hence generalizations should be seen with caution. In the present study the number of tokens is much higher and it accounted for the control of the syllable peak, avoiding the circular effects of coarticulation. Finally, the results of the present study were analyzed through statistical tests giving more power to generalizations.

Another issue to be discussed regards the non-significant difference between the degree of /I/ vocalization in the phonological environments 'pause' and 'consonant across the word'. It seems to be the case that the process of coarticulation between the final /I/ and the consonant across the word was absent or at least hindered, hence /I/ was not differently affected by the phonological environments 'pause' and 'consonant
across the word', although there was a tendency for higher vocalization in the former environment.

In summary, the results of the present study corroborate traditional assumptions about /// vocalization and about the effect of the phonological environment. The next sections analyze in depth the effects of the quality of the following consonant on the participants' realization of the $/ \mathrm{I} /$ in the English coda.

5.3.2 Voicing of the following consonant

Does voicing of the following consonant influence the vocalization of /I/ in the English coda? It was hypothesized that the degree of vocalization of /I/ would be influenced by voicing of the following consonant. Table 7 presents the results.

Table 7

/I/ vocalization in the phonological environments: voiced and voiceless consonants

	Different realizations of /l/ followed by a consonant											
	Within the word				Across the word				Both phonological environments			
	N	Grade Median	Grade min	Grade max	N	Grade Median	Grade min	Grade max	N	Grade Median	Grade min	$\begin{aligned} & \text { Grade } \\ & \max \end{aligned}$
Voiced	419	5.65	4.71	8.24	560	6.87	2.60	8.48	979	6.38	3.45	8.00
voiceless	465	6.61	5.00	8.75	457	7.16	2.71	9.32	922	6.88	4.04	8.48
N total	884				1017				1901			

The /I/ was mostly vocalized when the following consonant was 'voiceless', both 'within the word' and 'across the word' (Median $=5.65$ vs. 6.61 and 6.87 vs. 7.16, respectively). Considering both phonological environments together, the medians
presented the degrees of vocalization of 6.38 for voiced consonant and 6.88 for voiceless consonant.

The Friedman statistical test yielded that the difference between voiced and voiceless consonants was significant $\left(\mathrm{X}^{2}(5, \mathrm{~N}=20)=30.952, \mathrm{p}<.05\right)$. Thus, Wilcoxon tests were run in order to verify whether the pairs voiced vs. voiceless were significantly different for all phonological environments. The results yielded that the degree of vocalization of /I/ was significantly higher before voiceless consonants than voiced consonants for all phonological environments: (a) 'consonant within the word': $\mathrm{Z}=-3.260, \mathrm{p}<.05$; (b) 'consonant across the word': $\mathrm{Z}=-2.737, \mathrm{p}<.05$; and (c) both contexts: $\mathrm{Z}=-3.435, \mathrm{p}<.05$.

In summary, the following voiceless consonants significantly triggered more /I/ vocalization than the following voiced consonants, both in the phonological environment 'within the word' and 'across the word', confirming the hypothesis that the degree of vocalization of /I/ would vary according to voicing of the following consonant.

These results corroborate Baratieri (2005), whose results revealed that when dark/I/ was followed by a voiceless consonant it was more frequently vocalized.

5.3.3 Place of articulation

Concerning the question: "Does place of articulation of the following consonant influence the vocalization of /I/ in the English coda?", it was hypothesized that the degree of vocalization of /I/ would be influenced by place of articulation of the following consonant.

Firstly, it is important to highlight that voiced and voiceless consonants were treated without distinction here; hence the results encompass both voiced and voiceless consonant as a single entity. This treatment was due to the fact that there was a high correlation between voiced and voiceless consonants in the phonological environments bilabial, labiodental, alveolar, post-alveolar and velar (See Appendix F.a), thus voicing quality would not significantly influence the results. Table 8 presents the results.

Table 8

/I/ vocalization in the phonological environments: bilabial, labiodental, alveolar, postalveolar and velar

	Different realizations of /l/ followed by a consonant											
	Within the word				Across the word				Both phonological environments			
	N	Grade Median	$\begin{gathered} \text { Grade } \\ \text { min } \end{gathered}$	$\begin{gathered} \text { Grade } \\ \max \end{gathered}$	N	Grade Median	$\begin{gathered} \text { Grade } \\ \text { min } \end{gathered}$	$\begin{gathered} \text { Grade } \\ \max \end{gathered}$	N	Grade Median	$\begin{gathered} \hline \text { Grade } \\ \text { min } \end{gathered}$	$\begin{gathered} \text { Grade } \\ \max \end{gathered}$
Bilabial	162	7.93	5.00	10.00	231	8.75	2.50	10.00	393	8.42	4.00	10.00
Labiodental	148	6.25	5.00	10.00	155	7.81	1.25	10.00	303	7.06	3.13	9.69
Alveolar	281	5.15	3.21	6.07	352	5.65	3.13	8.00	633	5.52	3.17	7.00
Post-alveolar	135	5.94	4.38	10.00	129	5.94	3.33	10.00	264	6.09	4.69	9.17
Velar	158	6.25	4.38	9.38	150	7.19	2.86	10.00	308	6.93	4.62	9.00
	884				1017				1901			

The source data is found in Appendix F

In summary, no matter what the consonant position was (within the word or across the word), nor voicing quality, /I/ vocalization more frequently occurred before bilabials, then labiodentals, then velars, then post-alveolars and finally before alveolars.

The Friedman statistical test yielded that the difference between the levels of the variable 'place of articulation' was significant for all the phonological environments: (a) 'consonant within the word' $\left(\mathrm{X}^{2}(4, \mathrm{~N}=20)=28.299, \mathrm{p}<.05\right)$; (b) 'consonant across
the word' $\left(\mathrm{X}^{2}(4, \mathrm{~N}=20)=33.397, \mathrm{p}<.05\right)$; and (c) both phonological environments together $\left(\mathrm{X}^{2}(4, \mathrm{~N}=20)=47.222, \mathrm{p}<.05\right)$.

Consequently, in order to verify whether the differences between different pairs of levels of place of articulation were significant between themselves, several Wilcoxon Signed Ranks Tests were run ${ }^{32}$. The results are displayed on Table 9.

Table 9
Difference significance between the levels of the variable place of articulation

	Place of articulation	Labiodental	Alveolar	Post-alveolar	Velar
$\begin{aligned} & \text { 믕 } \\ & 3 \\ & 3 \\ & \text { E } \\ & =3 \end{aligned}$	Bilabial	$\mathrm{Z}=-2.680^{* *}$	$\mathrm{Z}=-3.680^{* *}$	$\mathrm{Z}=-2.701$ **	$\mathrm{Z}=-2.964 * *$
	Labiodental		$\mathrm{Z}=-3.432^{*}$	$\mathrm{Z}=-.786$	$\mathrm{Z}=-.263$
	Alveolar			$\mathrm{Z}=-3.124^{*}$	$\mathrm{Z}=-3.260 * *$
	Post-alveolar				$\mathrm{Z}=-.853$
$\begin{aligned} & \text { 믕 } \\ & \text { 号 } \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	Bilabial	$\mathrm{Z}=-2.939^{* *}$	$\mathrm{Z}=-3.849^{* *}$	$\mathrm{Z}=-3.181^{* *}$	$\mathrm{Z}=-2.940^{* *}$
	Labiodental		$\mathrm{Z}=-3.300 * *$	$\mathrm{Z}=-1.658$	$\mathrm{Z}=-.313$
	Alveolar			$\mathrm{Z}=-2.343 *$	$\mathrm{Z}=-3.662^{* *}$
	Post-alveolar				$\mathrm{Z}=-2.039^{*}$
$\begin{aligned} & \stackrel{n}{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Bilabial	$\mathrm{Z}=-3.510^{* *}$	$\mathrm{Z}=-3.920^{* *}$	$\mathrm{Z}=-3.621^{* *}$	$\mathrm{Z}=-3.360^{* *}$
	Labiodental		$\mathrm{Z}=-3.883 * *$	$\mathrm{Z}=-1.952$	$\mathrm{Z}=-.373$
	Alveolar			$\mathrm{Z}=-3.680$ **	$\mathrm{Z}=-3.771^{* *}$
	Post-alveolar				$\mathrm{Z}=-2.113^{*}$

* $\mathrm{p}<0.05-{ }^{* *} \mathrm{p}<0.01$

The tests yielded that most of the differences were significant, except for the pairs labiodental vs. post-alveolar and labiodental vs. velar in all phonological environments, and post-alveolar vs. velar in the phonological environment consonant within the word. However, as can be seen in Figure 11, the vocalization of /I/follows a ' V ' pattern with a central point and two wings. The central point refers to the

[^19]vocalization of /I/ when followed by alveolar consonant. The left wing refers to the vocalization of /I/ when followed by bilabial and labiodental consonants, and the right wing refers to the vocalization of /I/ when followed by post-alveolar and velar consonants.

Figure 11: Degree of vocalization of /I/ according to place of articulation of the following consonant

Thus, the difference between the degrees of /I/ vocalization within the left wing was significant for each pair (bilabial - labiodental, bilabial - alveolar and labiodental alveolar), the bilabial consonant being the phonological environment that most favored vocalization and the alveolar the phonological environment that less favored it. Also, the results within the right wing presented significant difference between all pairs, except for the pair post-alveolar - velar, in the context within the word, (Figure 11, red circles). However, it is at least possible to claim that there is a tendency concerning these two places of articulation, the velar one being the environment in which /I/ vocalization would more frequently occur. Furthermore, the left wing surpassed the right wing in triggering / $\mathrm{I} /$ vocalization in all contexts.

Statistical significance apart, the results clearly show that the vocalization of /I/ was more hindered by the following alveolar consonant and the farther from the alveolar point was the place of articulation of the consonant that follows the $/ \mathrm{I} /$, the greater was the degree of its vocalization, in both left and right wing. Therefore, the hypothesis that the degree of vocalization of /I/ would be influenced by place of articulation of the following consonant was confirmed since it varied from phonological environment to phonological environment.

5.3.3.1 The results in the light of literature

The finding of the present study corroborates scholars' traditional claims that /I/ vocalization is the result of central alveolar contact loss, which would be more favored before velars and labials, than before apicals and palatals. It is advocated that the tongue configuration for velars (a high back closure and a lowered predorsum) would favor the /I/ apical contact loss, hence the tongue would adopt a /w/-like feature; for labials, it is advocated that there is no lingual activity, which would also favor the dark /I/ apical contact loss (Grammont, 1971; Hartcastle \& Barry, 1985; Ohala \& Kawasaki, 1984; Straka, 1968, all cited in Recasens, 1996;).

I would suggest that /I/ vocalization would be favored or inhibited by the homorganicity of gestures between the /I/ and the following consonant. That is, when the following consonant was a velar one, the vocalic gesture of the /I/ would be emphasized since it is homorganic of the most salient gesture of the velars, and when the following consonant was a coronal one, the consonantal gesture of the /I/ would
be emphasized since it is homorganic of the most salient gesture of the alveolars. I would also suggest that the labial segments have to do with the secondary articulation of the glide /W/ (labial protuberance), which would facilitate the dark /I/vocalization.

However, the scholars' claims do not account for what happens in a considerable number of Romance language dialects, in which the dark /I/ vocalization is more frequent before coronals (dental and alveolar stops, fricatives, and affricatives) than before labials, velars and pause (e.g., the following coronal consonant seems to favor the vocalization of the liquid $/ \mathrm{I} /$ in comparison to bilabial and dorsal consonants (Lamprecht, 2004)). Thus, taking into account that the participants of this research are Brazilian EFL learners, and that the results showed that the pattern of their /I/ vocalization corroborates traditional beliefs and not what occurs with the BP /I/, it may be argued that rather than native language transfer, an interlanguage development process operates in the acquisition of the /I/ in the English coda. If native language transfer were operating exclusively, vocalization would be more frequent before alveolar consonants, but in fact the results pointed to an opposite trend.

5.3.4 Manner of articulation

The question of the present research concerning manner of articulation read: "Does manner of articulation of the following consonant influence the vocalization of /I/ in the English coda?", and it was hypothesized that the degree of vocalization of /I/ would be influenced by manner of articulation of the following consonant. Table 10 presents the results of this investigation.

Table 10

/I/ vocalization in the phonological environments: plosive, nasal and fricatives

$\begin{aligned} & \text { त्ड } \\ & \text {. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Different realizations of /l/ followed by a consonant											
	Within the word				Across the word				Both phonological environments			
	N	Grade Median	Grade min	Grade max	N	Grade Median	Grade min	Grade max	N	Grade Median	Grade min	Grade max
Plosive	468	6.35	4.58	8.33	457	7.72	2.83	9.52	925	7.03	4.33	8.22
Nasal ${ }^{1}$	19	8.50	5.00	10.00	124	7.19	4.00	10.00	143	7.18	4.00	10.00
Fricative	397	6.08	4.17	8.82	436	6.36	2.14	8.13	833	6.22	3.08	7.84
	884				1017				1901			

The source data is found in Appendix G
${ }^{1} \mathrm{~N}$ total 160 - missed - within the word: 141 - across the word: 36

The first fact to be analyzed concerns the effects of the nasal consonants on the /I/ production. The results show that in the phonological environment 'within the word' most of the tokens were considered as missing tokens (141 out of 160) due to the fact that the following nasal mostly caused the nasalization of the /I/ productions. This fact corroborates the assumption that coarticulation occurred more frequently when the consonant was within the word than across the word. That is, nasalization of the production of $/ \mathrm{I} /$ mostly occurred when the nasal consonant was within the word (141 out of 160) than across the word (36 out of 160).

Nasalization apart, the analysis of the valid tokens detected that the behavior of /I/ followed by nasal consonant in relation to the following plosive consonants was not consistent between the phonological environments within and across the word. That is, whereas the degree of vocalization of $/ I /$ in the phonological environment within the word was higher when followed by nasals than when followed by plosives (8.50 vs. 6.35), the opposite occurred in the phonological environment across the word
(7.19 vs. 7.72). Concerning the following fricatives, the results show that it was the environment which presented the lowest degree of vocalization of $/ \mathrm{I} /$ in both phonological environments.

In order to verify whether there were significant differences between the degrees of vocalization of $/ \mathrm{I} /$ according to each manner of articulation of the following consonant, Friedman tests were run for each phonological environment (within and across word) separately, due to the inconsistent behavior of the nasal consonants. The statistical tests revealed that the difference between the degrees of /I/ vocalization according to the manner of articulation of the following consonant was significant for both phonological environments: (a) 'consonant within the word' $\left(\mathrm{X}^{2}(2, \mathrm{~N}=6)=\right.$ 7.000, $\mathrm{p}<.05$); (b) 'consonant across the word' $\left(\mathrm{X}^{2}(2, \mathrm{~N}=20)=16.219, \mathrm{p}<.05\right)$.

Consequently, in order to verify whether the differences between different pairs of levels of manner of articulation were significant between themselves, several Wilcoxon Signed Ranks Tests were run. The results are displayed on Table 11.

Table 11

Difference significance between the levels of the variable manner of articulation

	Place of articulation	Nasal	Fricative
	Plosives	$Z=-1.782$	$Z=-1.512$
Within	Nasal		$Z=-1.992^{*}$
Aldrosd	Plosives	$Z=-.414$	$Z=-3.724^{* *}$
Word	Nasal		$Z=-2.417^{*}$
$* \mathrm{p}<0.05-{ }^{* *} \mathrm{p}<0.01$			

Due to the non-consistent effect of the nasal segment on the /I/ production in the phonological environments tested, any assumption would be just guessing. However, the statistical analysis showed that the difference between the degrees of
vocalization of /I/ when followed by nasal and when followed by plosive consonants were not significant in both phonological environment (within the word and across the word), thus, I would say that they affected the production of /I/ in a similar way.

Concerning the difference between the degrees of vocalization of /I/ when followed by plosive and when followed by fricative consonants, the results show significance for the phonological environment across the word, but non-significance for the phonological environment within the word. Taking into account that coarticulation mostly occurred in the phonological environment within the word, then, if any assumption about the effects of the following consonant on the /I/ production is to be raised, it should be raised taking into consideration the phonological environment 'within the word' only. Thus, the degree of vocalization of /I/ when followed by plosive and fricative consonants was not significantly different.

In summary, the results point to the assumption that manner of articulation of the consonant that follows the $/ \mathrm{I} /$ is not the decisive factor that causes its vocalization, although there is a tendency for plosives and nasals to surpass the fricatives in triggering the vocalization of $/ \mathrm{I} /$. This tendency seems to be coherent since the place of articulation of fricatives is closer to the alveolar point than the place of articulation of plosives and nasals are, and as seen in section 5.3.3, the closer to the alveolar point was the place of articulation of the following consonant, the lower the degree of $/ \mathrm{I} /$ vocalization. However, the statistical analyses fail to confirm the hypothesis that the degree of vocalization of /I/ would be influenced by manner of articulation of the following consonant.

It is important to comment that the findings of the present study concerning the effects of manner of articulation of the following consonant on /I/ vocalization may be considered just the tip of iceberg since it is a pioneering work.

5.3.5 Place vs. manner of articulation

Which is the decisive factor in influencing the vocalization of /I/ in the English coda: place of articulation or manner of articulation of the following consonant? It was hypothesized that place of articulation of the following consonant would surpass manner of articulation of the following consonant in determining the degrees of vocalization of /I/. Table 12 presents the results:

Table 12
Degree of vocalization (mean) - Place vs. Manner of articulation

	Manner of Articulation	Places of articulation				
		Bilabial	Labiodental	alveolar	Postalveolar	velar
Within Word	plosive	7.68		4.94		6.52
	nasal	8.18		8.13		
	fricative		6.52	5.22	6.22	
Across Word	plosive	9.01		5.84		7.35
	nasal	7.50		6.36		
	fricative		7.42	5.23	6.32	
Both Phonological environments	plosive	8.24		5.32		6.85
	nasal	7.50		7.28		
	fricative		6.98	5.28	6.27	

The source data is found in Appendix H

The results seem to confirm the assumption that was raised in the previous section that the manner of articulation of the consonant that followed /I/ would not be the decisive factor in affecting its vocalization. The degree of vocalization of /I/ behaved similarly for both phonological environments 'within the word' and 'across
the word', the place of articulation being the factor which guided vocalization of $/ \mathrm{I} /$. That is, no matter the manner of articulation of the consonant that followed the $/ \mathrm{I} /$, its vocalization was directed by the place of articulation of the consonant that followed it.

Figure 12: Degree of /I/ vocalization - manner vs. place of articulation

Figure 12 displays the behavior of /I/ vocalization in face of different manners and places of articulation. As can be grasped, /I/ vocalization occurred less frequently before alveolar consonants, either for plosives, nasals and fricatives. Furthermore, the farther the place of articulation of the consonant that followed the /I/ from the alveolar place, the greater was the degree of vocalization of $/ \mathrm{I} /$.

Therefore, the hypothesis that place of articulation of the consonant that follows /I/ in the English coda would be the decisive factor in influencing its vocalization was confirmed.

5.4 Acoustic behavior of the different realizations of /I/

Do different realizations of /I/ in the English coda affect the acoustic properties of the syllable rhyme? Hypotheses were raised concerning the syllable peak formant
frequencies, the/I/ formant frequencies, and the duration. The results regarding each hypothesis are reported in the following sub-sections and a spreadsheet with the raw acoustic values is found in Appendix K.

5.4.1 The syllable peak formant frequencies

It was hypothesized that the F3/F1 and F2/F1 ratios of the vowel in the syllable peak would vary according to the realization of /I/. That is, different realizations of /I/ would cause changes in the syllable peak formant frequencies. Table 13 presents the results:

Table 13
Syllable peak acoustical behavior in face of different productions of $/ / /$

Sex	Prod:	N	Mean F1 Peak	Mean F2 Peak	Mean F3 Peak	Ratio F3/F1 mean	S.D	Ratio F2/F1 mean	S.D
male	L	1	525	1526	2493	4.74	--	2.90	--
	Lw	115	523	1636	2408	4.62	. 49	3.14	. 34
	W	127	515	1588	2456	4.79	. 47	3.09	. 32
female	L	25	660	1880	2828	4.28	. 39	2.84	. 51
	Lw	468	640	1900	2761	4.34	. 60	2.98	. 48
	W	281	615	1932	2844	4.68	. 69	3.17	. 49
Grand Mean	L	26	655	1866	2815	$\begin{array}{ll\|l\|l} \hline 4.30 \\ 4.39 & .39 & 2.84 \\ 4.71 & .59 & 3.01 & .50 \\ .63 & 3.15 & \\ \hline \end{array}$			
	Lw	583	617	1848	2692				
	W	408	584	1825	2723				
		1017							

The dataset treatment was the first strategy carried in order to check the hypothesis. Only the syllable peaks of the word 'tell' from the phonological environment / / followed by a consonant across the word were analyzed, thus the effect of the onset $/ \mathrm{t} /$ would be similar to all productions and hence the peak would be influenced mainly by different realizations of the /I/. This strategy resulted in 1017
valid tokens which comprised three different productions of /I/: 'L' (non-vocalized), 'Lw' (partially vocalized) and 'W' (vocalized). The overall results show that the F3/F1 and F2/F1 ratios of the vowel in the syllable peak varied according to the realization of /I/: the more vocalized the /I/ was, the higher the ratios were ('W' > ' Lw ' > ' L ').

The Kruskal-Wallis test revealed that both F3/F1 and F2/F1 ratios mean differed significantly as a function of different productions of $/ \mathrm{I} /\left(\mathrm{X}^{2}=69.394, \mathrm{df}=2, \mathrm{p}<.01\right.$ and $X^{2}=21.041, \mathrm{df}=2, \mathrm{p}<.01$, respectively). Thus, the Mann-Whitney Test was run for both F3/F1 and F2/F1 ratios in order to check whether the difference was significant for each pair of different productions of $/ \mathrm{I} /$. The test results are displayed on table 14:

Table 14

Mann-Whitney test - ratios of the peak

F3/F1			F2/F1		
	'Lw'	'W'		'Lw'	'W'
'L'	$\mathrm{Z}=-.924$	$\mathrm{Z}=-3.785^{*} *$	'L'	$\mathrm{Z}=-1.339$	$\mathrm{Z}=-2.701^{* *}$
'Lw'		$\mathrm{Z}=-8.027^{* *}$	'Lw'		$\mathrm{Z}=-4.158^{* *}$

As can be inferred, the Mann-Whitney Tests yielded that the difference between both F3/F1 and F2/F1 ratios of the syllable peak was not significant when the /I/ was realized as ' L ' and as ' $L w$ '. Thus, although there is a tendency for these ratios to be higher for the realization of $/ \mathrm{I} /$ as 'Lw' (F3/F1: 4.39 and F2/F1: 3.01) than as 'L' (F3/F1: 4.30 and F2/F1: 2.84), any assumption about which production of /I/ was made just by looking at the F3/F1 and F2/F1 ratios of the peak would be imprecise. However, when the I/ was realized as 'W', the F3/F1 and F2/F1 ratios of the peak were both
significantly higher than when the I/ was realized as 'L' and 'Lw'. Thus, there would be a great possibility of identifying the /I/ realization as 'W' by looking at the formant frequencies of the syllable peak.

As displayed in Figure 13, the statistical test showed with confidence of 95% that the syllable peak formant frequencies behavior could denote at least the complete vocalization of the phoneme $/ \mathrm{I} /(\mathrm{W})$ produced by the participants of the present study. Also, those productions of the /I/ in which its syllable peak F3/F1 and F2/F1 were lower than 4.30 and 2.84 respectively could probably be classified as non-vocalized (L) at all.

Figure 13. F3/F1 vs. F2/F1 ratios of the syllable peak - 95\% confidence interval

Thus, the hypothesis that the F3/F1 and F2/F1 ratios of the vowel in the syllable peak would vary according to the realization of /I/ was partially supported. There were significant difference between the realizations of $/ \mathrm{I} / \mathrm{as}$ ' W ' and as ' L ' and as ' W ' and as 'Lw', but the difference was not significant between the realizations of $/ \mathrm{I} /$ as ' L ' and as 'Lw'.

5.4.1.1 The results in the light of Literature

The literature basically claims that the first formant frequencies of the syllable peak decrease proportionally to the degree of vocalization of the phoneme /I/ that follows it. Lehiste (1964) claims that the darker the quality of $/ \mathrm{I} /$, the lower the syllable peak F2 frequency will be. Lehiste also states that the labialization of the following consonant causes a decrease in the first formant frequencies of its syllable peak. The results of the present study seem to corroborate Lehiste's since the vocalization of the /I/ caused a decrease in the first English and second formant frequencies of the syllable peak, at least.

However, although it seems true that vocalization of the /I/ causes the first formants of the syllable peak to decrease; the degree of decreasing seems to be particular for each formant and may vary according to individual differences. This study showed that the difference between the formant frequencies (ratios of F3/F1 and F2/F1) of the syllable peak seems to be a better predictor of /I/ vocalization. That is, the greater the difference between F3 - F1 and F2 - F1 frequencies, the higher the degree of /I/ vocalization. It is important to highlight that the present study only tested the vowel $/ \varepsilon /$ in the peak position, thus any generalization concerning the frequency behavior of any other vowel in the syllable peak would be inadequate.

A last remark regards the comparison between the first three formant frequencies of the syllable peak $/ \varepsilon /$ produced by the participants of the present study with the pattern of the first three formant frequencies of the English and BP vowel $/ \varepsilon /$. Table 15 displays the frequencies and the ratios.

Table 15
English and Brazilian formant frequencies for $/ \varepsilon /$

	N	F 1	F2	F3	F3/F1	F2/F1
English average (Ladefoged, 2001)	--	550	1770	2490	4.52	3.21
BP male (Rauber, 2006)	--	497	1888	2620	5.27	3.79
BP female (Rauber, 2006)	--	611	2283	2969	4.85	3.73
Present study - male - grand mean	243	519	1609	2421	4.69	3.11
Present study - female - grand mean	774	632	1908	2796	4.47	3.04
Present study - average	1017	575	1758	2608	4.53	3.05

The most relevant fact is that the formants average of the present study was similar to those of the English, except for the third formant frequency which presented some discrepancy. However, due to the fact that the F1 and F2 frequencies are related to both vowel height and frontness respectively (Stevens, 1997) I would say that the participants of this study are producing the $/ \varepsilon /$ in a similar articulatory way the English average. Concerning the comparison between the present study first formant frequencies of the $/ \varepsilon /$ with the BP $/ \varepsilon /$, the F1 frequency mean of the present study was a little higher than the F1 frequency mean of BP whereas the F2 and F3 frequency mean of the present study were lower than the F2 and F3 frequency mean of BP.

The fact that the participants of the present study produced the $/ \varepsilon /$ acoustically more similarly to the English $/ \varepsilon /$ than to the $\mathrm{BP} / \varepsilon /$ may be seen as evidence that their interlanguage is evolving and hence they are overcoming the strategy of L1 transfer.

5.4.2 The formant frequencies of different productions of /I/

It was hypothesized that the F3/F1 and F2/F1 ratios of /I/ would vary according to its realization. That is, different realizations of /// would cause changes in its formant frequencies.

Table 16 shows that the means of both F3/F1 and F2/F1 ratios of the /I/ varied according to its realization, being higher when the /I/ was partially vocalized (Lw) than when the /I/ was totally-vocalized (W), which was higher than when the /I/ was nonvocalized (L) - ('Lw' > 'W' > 'L').

Table 16
Acoustical behavior of different productions of /l/

The Kruskal-Wallis test revealed that both F3/F1 and F2/F1 ratios mean differed significantly as a function of different productions of $/ \mathrm{I} /\left(\mathrm{X}^{2}=55.866, \mathrm{df}=2, \mathrm{p}<.05\right.$ and $\mathrm{X}^{2}=21.654, \mathrm{df}=2, \mathrm{p}<.05$, respectively). Thus, the Mann-Whitney Tests were run for both F3/F1 and F2/F1 ratios in order to check whether the differences were
significant for each pair of different productions of $/ \mathrm{I} /$. The results are displayed in table 17:

Table 17
Mann-Whitney test - ratios of the peak

F3/F1			F2/F1		
	'Lw'	'W'		'Lw'	'W'
'L'	$\mathrm{Z}=2.732^{* *}$	$\mathrm{Z}=.797$	'L'	$\mathrm{Z}=1.316$	$\mathrm{Z}=.109$
'Lw'		$\mathrm{Z}=2.230^{* *}$	'Lw'		$\mathrm{Z}=4.593^{* *}$

*p<0.05-**p<0.01

Concerning the F3/F1 ratios, there was no significant difference between the realizations of $I /$ as ' L ' and as ' W ', but the ratio of 'Lw' was significantly higher than the ratio of ' L ' and the ratio of ' W '. Concerning the F2/F1 ratios, the Mann-Whitney Tests showed that only the ratio of the realizations of /I/ as ' Lw ' was significantly higher than the realizations of $/ / /$ as ' W '.

Figure 14 presents a scatterplot with F3/F1 and F2/F1 ratio means within the confidence interval of 95%.

Figure 14: F3/F1 vs. F2/F1 ratios of the realizations of /I/ - 95\% confidence interval

As can be inferred, the ratios of the realizations of $/ \mathrm{I} /$ as ' L ' and as ' W ' surpass one another in both $\mathrm{F} 3 / \mathrm{F} 2$ and $\mathrm{F} 2 / \mathrm{F}$, thus the difference between them are not significant. The only realization which differs from the other two is the ' Lw ', at least in relation to F3/F1 ratio.

Thus, although the ratio varied according to the realizations of $I / /$, the hypothesis raised was only partially supported due to the fact that the F3/F1 and F2/F1 ratios were only significantly higher for the $/ I /$ realized as 'Lw' than the realizations of I/ as ' L ' and as ' W '. Thus any attempt to link the ratios value to the $/ \mathrm{I} /$ realization would fail, except for 'Lw'. However, statistical significance apart, it is important to highlight that the result concerning the realizations of $/ \mathrm{I} / \mathrm{as}$ ' Lw ' is somehow unexpected and odd under the light of literature, as discussed in the section below.

5.4.2.1 The results in the light of literature

The pertinent literature traditionally describes the acoustic properties of the realizations of /I/ focusing on their two allophones: 'clear' and 'dark'. However, the present study did not describe the realizations of /I/ in terms of 'dark' or 'clear', but in terms of presence or absence of consonantal and vocalic gestures. The productions labeled as ' L ' comprise the realizations of /I/ with only the consonantal gesture (tongue - alveolar); the productions labeled as ' W ' comprise the realizations of /I/ with only the vocalic gesture (tongue retraction and lip-rounding); and the productions labeled as 'Lw' comprise both realizations of /I/. Thus, in order to make a parallel with the literature, I would link the realization of $/ \mathrm{I} /$ as ' L ' as having the lowest
degree of darkness and the realization of /I/ as 'W' as having the highest degree of darkness and labialization; the realization of /I/ as 'Lw' would lie in between them.

In order to situate the reader and enhance understanding, the means of the formant frequencies and ratios of the present study are displayed in table 18. Furthermore, with the aim of assisting further studies, figures of spectrograms and spectra of each realization of $/ \mathrm{I} /$ are displayed in Appendix J .

Table 18
Formant frequencies and ratios of different realizations of /I/

Production	N	F1	F2	F3	F3/F1	S.D	F2/F1	S.D
L	57	562	1204	2663	4.89	1.02	2.20	.45
Lw	1319	523	1185	2701	5.25	.86	2.30	.48
W	758	520	1143	2549	5.02	.93	2.25	.58

Concerning F2, the results seems to agree with the literature since the more vocalized and darker the realizations of /I/ were, the lower the frequency was. For example, Hayward (2000) and Llisterri and Daudén (1990) claim that the second formant frequency of the $/ \mathrm{I} /$ is lower for the dark / $\mathrm{I} /$ than for the clear $/ \mathrm{I} /$, and there is even a greater frequency reduction when vocalization takes place. That is, the darker the $/ \mathrm{I} /$ the lower its F 2 would be.

As regard F1, the results show an opposite tendency from the literature since the darker and more vocalized the realizations of /I/ were, the greater the tongue retraction and consequently the higher the F1 would be. For example, Lehiste (1964) states, that the dark /I/ has a higher F1 frequency than the clear /I/. Although the
behavior of the F1 is mostly influenced by tongue height, concerning /I/ realizations, I believe that the darker the production is, the lower and more retracted the tongue will be, increasing F1 frequency. The tongue would be lower due to weakness or absence of a consonantal gesture. This articulatory behavior corroborates Sproat and Fujimura's (1993) claim that tongue retraction and dorsum lowering are present in dark /I/ realizations.

Taking both F1 and F2 into consideration, the closer the F1 and F2 are together the darker the /I/ is. Ladefoged (2001) contributes with this idea by proposing that the closer the F1 and F2 are together, the more back the sound is. Thus, the results also do not contribute since the ratio F2/F1 showed odd behavior, being higher for the realizations of $/ \mathrm{I} / \mathrm{as}$ ' Lw ' and lower for the realizations of $/ \mathrm{I} /$ as ' L ', whereas the realizations of /I/ as ' W ' presented $\mathrm{F} 2 / \mathrm{F} 1$ ratio in between them.

Concerning the F3, the highest frequency for the realization of /I/ as ' Lw ' was also unexpected. Taking into consideration that F3 is not significantly affected by lingual activity, but by labial protuberance, which would cause its decrease (Lehilse, 1964; Stevens, 1997), then the F3 would be higher for the realizations of /I/ as ' L ' then as 'Lw', which would have a higher F3 than the realizations of /I/ as 'W'.

The odd and unexpected behavior of the first and third formants of /I/ may be due to the effect of the following environment on their frequencies. For example, each particular realization of /I/ could have presented different acoustical behavior due to the action of the following environment. However, to conduct such an investigation, the realization of $/ \mathrm{I} /$ should be stable in order to minimize circular effects.

5.4.2.2 A comparison between the formant frequencies and ratios of /I/

The present study analyzed 57 productions of $/ \mathrm{I} /$ as ' L ', 1.319 as ' Lw ' and 758 as 'W'. Table 19 presents their first three formants frequencies, ratios, as well as the formant frequencies and ratios of the dark / $/$ / and /w/ in coda position gathered from the literature.

Table 19
Formant frequencies of /I/ and /W/

Production		F1		F2	F3 F3/F1 F2/F1		
The present study	L		562	1204	2663	4.89	2.20
The present study	Lw		523	1185	2701	5.25	2.30
The present study	W		520	1143	2549	5.02	2.25
Llisterri and Daudén (1990)	Catalan dark /l/		--	874-1039	--	--	--
Ladefoged and Maddieson (1996)	General dark /1/			900-1000	--	--	--
Dalston (1975)	E male /l/ onset		--	1179	--	--	--
Dalston (1975)	E female /l/ onset		--	1340	--	--	--
Dalston (1975)	E male /w/ onset		--	732	--	--	--
Dalston (1975)	E male /w/ onset		--	799	--	--	--
Ladefoged and Maddieson (1996)	E dark /I/		510	870	--	--	
Ladefoged and Maddieson (1996)	$\mathrm{E} / \mathrm{w} /$		545	850	--	--	1.55
Silva (1997)	BP vocalized /l/		340	829	--	--	2.44
Macquarie University homepage	/w/	250	- 450	600-850	--	--	
Macquarie University homepage	dark /l/		450	750	--	--	1.67

Concerning the F1 frequencies, all realizations of /I/ of this study present similar frequencies to those of the English dark /I/ and /w/ presented by Ladefoged and Maddieson (1996). However, the frequency of the production of /I/ as 'W' was much higher than the vocalized BP /// presented by Silva (1997). Thus, generalizations apart, it seems that the participants of the present study realized the /I/ much more similarly to the English /I/ and /w/ than to the BP /w/ in terms of F1 frequency.

As regards the F2 frequency, the findings of the present study most approximate the frequencies found by Dalston (1975) and Llisterri and Daudén (1990) in relation to the phoneme /I/, but were far from the English /I/ F2 frequencies proposed by Ladefoged and Maddieson (1996) and Macquarie University homepage (http://www.ling.mq.edu.au/speech/acoustic/consonants/approxweb.html). Concerning the glide $/ \mathrm{w} /$, all the literature set its frequency around 800 Hz ; however the realizations of /I/ as ' W ' in the present study presented a much higher frequency.

Due to the discrepancy between the results of the present study and the literature, any generalization about linking the formant frequencies with the realizations of /I/ would have to be done with caution.

Therefore, although the F3/F1 and F2/F1 ratios were significantly higher for the realizations of $/ I /$ as ' Lw ' than for the realizations of $/ I /$ as ' L ' and as ' W ', partially supporting the hypothesis that the ratios would vary according the realization of $/ \mathrm{I} / \mathrm{I}$ I would have the consciousness of saying that any generalization on this issue could be seen just as guessing.

5.4.2.3 Alternative proposal

It is claimed that the F2 would differentiate the clear /I/, the dark /I/ and the $/ \mathrm{w} /$, being lower for the latter and higher for the former, due to the degree of tongue retraction (Delattre,1951, cited in Llisterri \& Daudén, 1990; Lehiste, 1964).

However, in an analysis of data from several American English speakers, Ladefoged and Maddieson (1996) found that the dark /I/ and the /w/ in coda position
have similar formant frequencies $(/ \mathrm{I} / \rightarrow \mathrm{F} 1: 510, \mathrm{~F} 2: 870$ and $/ \mathrm{w} / \rightarrow \mathrm{F} 1: 545, \mathrm{~F} 2: 850)$.

In the present study the productions of $/ \mathrm{I} /$ as ' L ', ' Lw ' and ' W ' also presented similar formants (F1 \rightarrow 562-523-520, F2 \rightarrow 1204-1185-1143). In spite of the differences in the F2 values across the studies, the formant frequencies between the different phone realizations were consistently similar within the studies, which hindered the link between formant frequencies and phone realizations.

Thus, based on Ladefoged and Maddieson (1996) and on the findings of the present study, I propose that the formant frequency differences would be insufficient to assure whether the realizations of $/ I /$ were vocalized or not due to the fact they lay too close together.

I would argue that the articulators' gestures, which would be responsible for determining the first formant frequencies, do not reach their full target when the $/ \mathrm{I} /$ is in coda position due to the weakness of the segment in this position, thus their effect on the first formant frequencies would be minimized. Consequently, the different realizations of /I/ in the English coda would present similar F1, F2 and F3 which would at least blur their distinction in terms of formant frequencies.

Sproat and Fujimura (1993) commented that consonants are more weakly articulated in syllable-final than in syllable initial position, thus no matter the realizations of $/ \mathrm{I} /$ in coda position, I suppose they would be weakly articulated and hence their first formants would not vary enough to discriminate one realization from another in terms of frequencies.

It is important to highlight that the pertinent literature claims that other acoustic features, such as first formants bandwidth, amplitude and pole-zeros at high frequencies
could differentiate one realization of /I/ from another. These features were not investigated in the present study, though.

5.4.3 Duration

It was hypothesized that the mean of duration of the period which encompasses the vowel and /I/ would vary according to different realizations of /I/ in the English coda. Table 20 presents the results:

Table 20
Duration of different productions of /l/

The duration of the period which encompasses the vowel and /I/ showed consistency for both male and female participants, being higher for the realization of / // as ' L ' than as ' Lw ', which presented a higher duration than ' W ', thus the statistical tests were run without distinction between participants' gender.

The Kruskal-Wallis test revealed that the duration differed significantly as a function of different realizations of $/ \mathrm{I} /\left(\mathrm{X}^{2}=309.333, \mathrm{df}=2, \mathrm{p}<.05\right)$. Thus, the Mann-Whitney Tests were run in order to check whether the differences were
significant for each pair of different productions of $/ \mathrm{I} /$. The results are displayed in Table 21:

Table 21
Mann-Whitney test - duration from the peak beginning to the /I/end

'Lw'		'W'
'L'	$\mathrm{Z}=-4.197 *$	$\mathrm{Z}=-8.873 *$
'Lw'		$\mathrm{Z}=-16.594 *$

* $\mathrm{p}<0.001$

As can be seen, the statistical test showed that the duration measured from the peak beginning to the $/ I /$ end was significantly higher for the realization of $/ I /$ as ' L ' (. 24840 s.) than as 'Lw' (. 22540 s .) - ($\mathrm{Z}=-4.197$); and the realization of /I/ as 'Lw' had a significantly higher duration than the realization of /I/ as 'W' (. 22540 s . vs. . 17815 s .) $-(Z=-16.594)$.

Thus, it could be claimed that the duration which encompasses the peak and the /I/ is a good predictor of the realization of /I/ as 'L', 'Lw' and 'W', supporting the hypothesis that the duration of the period which encompasses the vowel and /I/ would vary according to different realizations of $/ \mathrm{I} /$ in the English coda.

5.4.3.1 The results in the light of literature

Dalston (1975) demonstrated that the /I/ has longer steady-state duration than $/ \mathrm{w} /$, and claims that whereas the tongue is in resting position for $/ \mathrm{w} /$, there is a
contact between it and the alveolar ridge for /I/, resulting in gesture delay. The present study at least confirmed that the duration of the syllable peak plus the phoneme /I/ in coda position varies according to the realization of $/ \mathrm{I} /$. Taking into consideration that the syllable peak was the same vowel for all productions of the present study, I would claim that the differences in duration would be caused mostly by the different productions of the $/ \mathrm{I} /$. I would propose that the more marked the production of $/ \mathrm{I} /$ in terms of articulatory gestures, the longer the duration would be.

However, in order to accept the assumption that the more marked the production of /I/ in terms of articulatory gestures, the longer the duration, it is necessary to show that the non-vocalized production (L) would be more marked than the partiallyvocalized one (Lw), which would be more marked than the vocalized one (W).

Thus, I would claim that the present study production of /I/ classified as 'L' mostly approximates Sproat and Fujimura (1993) definition of the dark /I/ - the combination of the vocalic gesture of tongue retraction followed by the consonantal gesture of tongue touching the dental/alveolar area - that is, the production of $/ \mathrm{I} /$ classified as 'L' would be mainly characterized by two lingual gestures, its retraction followed by its tip raising. Hence, it would be appropriate to presume that the production of $/ \mathrm{I} /$ classified as ' L ' would be more marked than the productions of /I/ classified as ' W ' due to the fact the latter is realized with only the single vocalic gesture. As regards the production of /I/ classified as 'Lw', I would assume that it would be more marked than the production of /I/ classified as ' W ', due to the presence of both vocalic and consonantal gesture, but less marked than the production of /I/
classified as 'L', due to the fact that the consonantal gesture of ' Lw ' would be weaker than the consonantal gesture of 'L'. Consequently, the duration of 'L' would be greater than ' Lw ', which would be greater than 'W', confirming the findings of the present study.

However, the realizations of $/ \mathrm{I} /$ of the present study were classified perceptually by the judges, with the aid of acoustic clues, but without any device which could measure the actual articulators' gestures. Hence, an analysis taking into account only the presence or absence of the most salient gestures of the realizations of /I/ would be more appropriate, since that was the perceptual strategy used by the judges to classify the productions. That is, the realization of $/ \mathrm{I} /$ as ' L ' was mainly characterized by the presence of the consonantal gesture, whereas the realization of /I/ as ' W ' was mainly characterized by the absence of it and by the presence of lip-rounding. The realization of /I/ as 'Lw' was characterized by the presence of both consonantal gesture and liprounding. The consonantal gesture has to do with lingual movement, thus present in the realization of $/ I /$ as ' L ' whereas the tongue is in resting position in the realization of /I/ as ' W '. Thus, the presence of an active lingual gesture would cause an increase in the duration of the segment. Hence, the duration of the realization of $/ I /$ as ' L ' would be greater than the duration of the realization of $/ \mathrm{I} /$ as ' W '. The duration of the realization of $/ \mathrm{I} /$ as ' Lw ' would be intermediate between the realization of $/ \mathrm{I} /$ as ' L ' and as ' W ' due to the fact that the consonantal gesture would be present but weaker than for the realization of $/ I /$ as ' L '.

In summary, I would argue that the presence of the consonantal gesture would increase the duration of $/ \mathrm{I} /$, which would vary proportionally according to the intensity of the consonantal gesture. That is, the more intense the consonantal gesture, the longer the duration of $/ \mathrm{I} /$.

CHAPTER 6

CONCLUSIONS

6.1. Final remarks

The main objectives of the present study were to investigate: (1) How Brazilian EFL learners produce /I/ in the English coda; (2) the influence of the following phonological environment on the production of /I/ concerning: (a) a pause, a consonant within the word and a consonant across the word; (b) voicing; (c) place of articulation; and (d) manner of articulation; and (3) the effect of different realizations of $/ \mathrm{I} /$ on the acoustic properties of the syllable rhyme concerning: (a) the F3/F1 and F2/F1 ratios of the syllable peak; (b) the F3/F1 and F2/F1 ratios of the phoneme $/ \mathrm{I} /$; and (c) the duration of the vowel in the peak plus /I/.

The main findings of this investigation and the assumptions raised are summarized below.

Finding 1: The participants of the present research produced the /I/ in the English coda in three main different ways: (a) partially vocalized - 'Lw' (61.8\%); (b) vocalized 'W' (35.5\%); and (c) non-vocalized - 'L' (2.7\%). On the one hand, the vocalized realizations of /I/ may indicate that L1 transfer played a role in shaping the participants' interlanguage. On the other hand, the high occurrence of partially vocalized productions may indicate that an interlanguage developmental process was operating in the acquisition of traces of the English dark / //.

Finding 2: The phonological environments 'pause' and 'consonant across the word' following /I/ significantly triggered more vocalization than the phonological environment 'consonant within the word'. The difference in the degrees of vocalization of 'pause' and 'consonant across the word' were not significant, though. The results do not corroborate the tendencies found in Baratieri (2005), and Moore (2004), but corroborate traditional beliefs that /I/ vocalization is more favored in prepausal position, as well as before velars and labials, than before apicals and palatals (Straka, 1968; Grammont, 1971; Ohala \& Kawasaki, 1984; Hartcastle \& Barry, 1985, all cited in Recasens, 1996). The non-significant difference between the phonological environments 'pause' and 'consonant across the word' may be due to the absence of the process of coarticulation in these cases, or at least to its avoidance to a certain degree. Thus, if the absence of coarticulation favors /I/ vocalization, then its presence would inhibit it, which was confirmed by the lower degree of /I/ vocalization before the phonological environment 'consonant with the word'.

Finding 3: A following voiceless consonant significantly triggered more /I/ vocalization than a following voiced one. This result corroborates Baratieri (2005).

Finding 4: The results showed that the farther the place of articulation of the following consonant from the alveolar point the greater the degree of /I/ vocalization was. The results corroborate the traditional beliefs that /I/ vocalization is more favored before velars and labials, than before apicals and palatals (Straka, 1968; Grammont, 1971; Ohala \& Kawasaki, 1984; Hartcastle \& Barry, 1985, all cited in Recasens, 1996); and
cannot be related to L1 transfer, since vocalization of BP /I/ is more favored before apicals and palatals than before velars and labials (Recasens, 1996; Lampretch, 2004). The results seem to signal that vocalization is favored or inhibited by the homorganicity of gestures between $/ \mathrm{I} /$ and the following consonant. That is, in the realization of $/ \mathrm{I} /$, the gesture homorganic with the following consonant is emphasized. The results also suggest that labial segments facilitate vocalization due to labial protuberance. In summary, the results indicated that rather than L1 transfer, an interlanguage developmental process is operating in the acquisition of /I/ in the English coda by the participants of this research, since /I/ vocalization was not favored before alveolar consonants, as occurs with BP /I/. In fact, the results, pointed to an opposite direction, that is, /I/ vocalization was inhibited before alveolar consonants and favored before labials and velars, as occurs with some varieties of English /// in coda position.

Finding 5: The results indicated a tendency for $/ \mathrm{I} /$ to be more frequently vocalized when followed by a plosive or a nasal consonant than when followed by a fricative. However, the statistical analyses failed to confirm the hypothesis that the degree of vocalization would be influenced by manner of articulation of the following consonant. Considering that place of articulation is the decisive factor that influences /I/ vocalization, the alveolar consonants being the ones which inhibit it, and the farther the place of articulation of the following consonant from the alveolar point, the greater the degree of $/ \mathrm{I} /$ vocalization, then the tendency found in relation to manner of articulation seems to be coherent; that is, fricatives would cause less /I/ vocalization than plosives
and nasals due to the fact that their place of articulation are closer to the alveolar point than plosives and nasals are.

Finding 6: The results showed that the place of articulation of the following consonant was the decisive factor of influence on /I/ vocalization. That is, /I/ vocalization occurred less frequently before alveolar consonants and the farther the place of articulation from the alveolar place, the greater the degree of vocalization. This fact was consistent also for plosives, nasals and fricatives.

Finding 7: The overall results showed that the F3/F1 and F2/F1 ratios of the vowel in the syllable peak were higher the more vocalized the /I/ was ('W' > 'Lw' > 'L'). However, they were only significantly higher for the realizations of /I/ as ' W ', whereas for the realizations of $/ \mathrm{I} /$ as 'Lw' and 'L', they did not differ significantly. That is, it was statistically possible to identify only the realizations of /I/ as 'W' by looking at the formant frequencies of its syllable peak. Moreover, taking into account the confidence interval of 95%, the realizations of /I/ whose F3/F1 and F2/F1 ratios of the vowel in the syllable peak were lower than 4.30 and 2.84 , respectively, could be identified as ' L '. The results seem to corroborate the literature in terms of the behavior of the syllable peak formants in face of /I/ vocalization effects: the darker and more labialized the /I/ is, the lower the syllable peak formant frequencies are (Lehilse, 1964). However, since raw formant frequencies vary greatly according to individual vocal tract differences, it can be suggested that the difference between the first formant frequencies seems to be a
better predictor of /I/ vocalization, thus it can be proposed that the greater the F3/F1 and F2/F1 ratios of the syllable peak, the higher is the degree of /I/ vocalization.

Finding 8: The results showed that the ratio F3/F1 of /l/ for 'Lw' was significantly higher than for 'W' and ' L '; whereas the ratio $\mathrm{F} 2 / \mathrm{F} 1$ of $/ \mathrm{I} /$ for ' Lw ' was only significantly higher than for ' W '. Thus, it was statistically possible to identify the realizations of /I/ as 'Lw' by looking at the F3/F1 only. However, the fact that the realizations of $/ \mathrm{I} /$ as 'Lw' presented the highest ratios, whereas the ratios of $/ \mathrm{I} /$ as ' W ' and 'L' surpassed one another can be seen as an unexpected result since it was assumed that the ratios of 'Lw' would lie in between the ratios of ' L ' and ' W '. Moreover, only the results concerning F2 corroborate the values found in the literature (Dalston, 1975; Llisterri and Daudén,1990). Besides that, the literature mostly approach the realizations of /I/ as clear and dark, whereas the realizations /I/ in the present study are not approached in such terms, but in terms of presence or absence of consonantal and vocalic gestures. Thus, any link between the previous literature and the results of the present study must be seen with caution.

In spite of these facts, and based on the results of the present study and on Ladefoged and Maddieson (1986), it is proposed that the first formants frequency seems to be insufficient to confidently differentiate one realization of /I/ from another, since they lay too close together due to the fact that the articulators involved in the production of these segments do not reach the target completely.

Finding 9: The duration of the realizations of $I /$ as ' L ' was significantly greater than those of /I/ as 'Lw' which, in turn, were significantly greater than the realizations of /I/ as 'W'. Therefore, it seems possible to identify the realization of $/ \mathrm{I} /$ by looking at its duration, since, the more vocalized the $/ I /$, the shorter the duration. This fact may be explained by the fact that ' L ' seems to have a more marked lingual activity than ' W ' resulting in gesture delay. The 'Lw' would lie in between 'L' and 'W'.

6.2 Pedagogical implications

I begin this section referring to the discussion in Baptista (1995) who advocates that the earlier the learner's awareness of the differences between L1 and L2 sound systems arises, the greater the chances of minimizing fossilization at the phonological level.

I further argue that foreign language teachers should be aware of the differences between L1 and L2 sound systems in order to be able to assist learners in overcoming L1 transfer.

Besides that, I also advocate that both teachers and material writers should consider the research on interlanguage phonology in order to produce materials for the teaching of EFL. Pedagogical materials should focus on L1 and L2 sound system differences and bring specific pronunciation activities for enhancing the development of interlanguage and avoid negative transfer.

The present study contributes to the field, more specifically to the area of English pronunciation acquisition by Brazilians with the following results and suggestions:

1. The BP speakers, learners of English who participated in the present study, vocalized or partially vocalized the /I/ in the English coda. That means that they fully transferred the $\mathrm{BP} / \mathrm{u} /$ or $/ \mathrm{w} /$ or that they transferred, at least, the feature of labialization. Thus, teaching the differences between the English and BP /I/ at the very beginning stages of instruction could minimize negative transfer and hence fossilization. However, the teachers as well as the material writers should be attentive to language change processes, and include up-to-date information in the materials and in their teaching practice. For example, Johnson and Britain (2003) indicate that /I/ vocalization in coda position is spreading over English speaking countries, especially in informal rapid speech, thus this phenomenon should be accounted in EFL materials and approached in classes. However, it must be highlighted that although English /I/ may be vocalized in some dialects, its vocalization does not have the same features of BP vocalization. In the former, vocalization means suppressing the apical/alveolar gesture exclusively, and in the latter vocalization means both the suppression of the apical/alveolar gesture and the addition of lip-rounding. Thus, treating the BP and English /// in coda as the same entity would enhance negative transfer of labialization and probably consequent fossilization of a wrong feature.
2. The results of the present study indicate that the degree of /I/ vocalization was higher before a 'pause' than before a 'consonant within the word'. Besides that, the following voiceless consonants triggered higher degrees of $\mathrm{I} /$ vocalization than the voiced ones. Moreover, the degree of vocalization in terms of place of articulation followed a decreasing order from bilabials, to labiodentals, velars, post-alveolars, and then to alveolars. Thus, awareness of these facts might facilitate
teaching and learning of the English final $\mathrm{I} /$, since possible problems may be accounted for. Moreover, considering that communication does not occur by words in isolation, and that coarticulation shapes the production of sounds, teaching words in connected speech seems to be much more productive and authentic than dealing with words in isolation.
3. The results concerning experimental phonetics enlighten the field of acoustic phonetics with valuable data which may be used by researchers, electronic engineers and speech synthesis technicians in order to enhance electronic communication. For example, by analyzing the first formant frequencies and the duration of the first segment in coda position it was possible to identify whether /I/ was vocalized, partially vocalized, or non-vocalized. Consequently, these data could be used to produce these phones electronically in a more natural form.

6.3 Limitations and suggestions for further research

Besides the unbalanced number of participants in terms of gender, only 5 out of 20 being male, a study including more participants would provide a greater number of valid tokens and hence generalizations would gain more power.

The present study only accounted for the vowel $/ \varepsilon /$ in the syllable peak, thus further studies testing other vowels in this environment would add to the findings of the present study. Also, it would be useful to conduct research in order to analyze the effects of the syllable peak on the realization of the English final /I/. That would clarify which syllabic environment as a whole favors or inhibits its vocalization. Besides that, studies accounting for the realization of the syllabic /I/ would add to the field as well.

Although the use of a carrier sentence in slides may have hindered reading, and hence given the test a more free-speech-like feature, real free speech could have triggered different rates of /// vocalization. However, it would be very difficult to gather tokens of the contexts covered in the present study in real free speech collection procedure.

Considering that some scholars agree that I/ vocalization is the result of articulatory change due to affinity of the gestures (e.g., Camara Jr., 1973; and Grammont, 1971; Ohala \& Kawasaki, 1984, cited in Recasens, 1996) and others agree that it is the result of misperception due to acoustic similarity (Ohala, 1974, 1981, 1985; von Essen, 1964, cited in Recasens, 1996), studies on the relationship between perception and production would enlighten the field.

Concerning acoustic phonetics, the present study did not analyze /I/ in terms of amplitude and bandwidth. Besides that, the effects of the following consonant on the acoustic properties of each realization of /I/ were not investigated. The pertinent literature claims that there is a clear link between them. Thus, future research in this sense is greatly advisable.

Finally, it is clear from this modest study that the scope of issues on acoustic and articulatory phonetics and their relationship is vast and hence much needs to be accounted for. Hopefully the findings of the present study will contribute for the enrichment of the field and the gaps left here will encourage further studies.

REFERENCES

Anderson, N. (1978). On the calculation of filter coefficients for maximum entropy spectral analysis. In Children, Modern Spectrum Analysis, 252 - 255.

Baptista, B. O. (1992). The acquisition of English vowels by eleven Brazilian Portuguese speakers: An acoustic analysis. Unpublished doctoral dissertation, University of California, LA.

Baptista, B. O. (1995). Aspectos da teoria cognitiva: Aplicações à aquisição/aprendizagem e ao ensino da pronúncia de línguas estrangeiras. Anais do IV Congresso Brasileiro de Lingüística Aplicada. Campinas, SP: Unicamp.

Baptista, B. O. (2000). The acquisition of English vowels by Brazilian-Portuguese speakers. Advanced Research English Series, 6. UFSC, Florianópolis.

Baptista, B. O. (2001). Frequent pronunciation errors of Brazilian learners of English. In M. B. M. Fortkamp \& R. P. Xavier (Eds.) Current issues in teaching and learning EFL in Brazil (pp. 223-230) Florianópolis: Insular.

Baptista, B. O. (2002). Language in contact: Brazilian English interlanguage phonology. Paper presented at the I Congresso Internacional das Linguagens / IV Seminário Internacional do Ensino de Língua Estrangeira - Espanhol e Inglês (SINELE). Erechim/RS.

Baptista, B. O. \& Silva Filho, J. L. A. (1997). The influence of markedness and syllable contact on the production of English consonants by EFL learners. Paper presented at the_New Sounds 97: Proceedings of the third international symposium on the acquisition of second language speech, Kaglenfurt, Austria.

Baratieri, J. P. (2005). The production of the English dark /I/ by EFL Brazilian teachers. Unpublished dissertation. ISEPE, Marechal Cândido Rondon/PR.

Blandon, R. A. W. \& Al-Bamerni A. (1976). Coarticulation resistance in English /I/. Journal of Phonetics 4, 137-150.

Brown, J. D. (1988). Understanding research in second language learning. Cambridge: Cambridge University Press.

Camara Jr, J. M. (1973). Estrutura da língua portuguesa. Petrópolis: Vozes.
Camara Jr, J. M. (1977). Para o estudo da fonêmica portuguesa. Rio de Janeiro: Padrão - Livraria English Editora.

Carlisle, R. S. (1992). Environment and markedness as interacting constraints on vowel epenthesis. Paper presented at the New Sounds 92: Proceedings of the 1992 Amsterdam symposium on the acquisition of second-language speech, Amsterdam, Holland.

Carlisle, R. S. (1997). The modification of onsets in a markedness relationship: Testing the interlanguage structural conformity hypothesis. Language Learning, 47, 327361.

Carlisle, R. S. (2001). The acquisition of onsets in a markedness relationship: The results of a five year longitudinal study. Paper Presented at the AAAl Annual Conference 2001, St. Louis, MO.

Cristófaro Silva, T. (2002). Fonética e fonologia do português: roteiro de estudos e guia de exercícios (6a. Edição). Sâo Paulo: Editora Contexto.

Dalston R. M. (1975). Acoustic characteristics of English /w, r, l/ spoken correctly by young children and adults. Journal of Acoustical Society of America, 57(2), 462 - 469 .

Denes, P. B. \& Pinson E. N. (1993). The speech chain: The physics and biology of spoken language. New York: W. H. Freeman and Company.

Durian, D. (2004). $/ s /$ retraction and $/ / /$ vocalization realization in Columbus AAVE speech: a quantitative sociophonetic analysis. Unpublished manuscript. The Ohio State University.

Eckman, F. R. (1996). A functional-typological approach to second language acquisition theory. In W. C. Ritchie \& T. K. Bhatia (Eds.), Handbook of second language acquisition (pp. 195-211). San Diego: Academic Press.

Eckman, F. R. (1987). Markedness and the contrastive analysis hypothesis. In G. Ioup \& S. H. Weinberger (Eds.), Interlanguage phonology: The acquisition of a second language sound system (pp. 55-69). New York: Newbury House.

Ellis, R. (1986). Understanding second language acquisition. Oxford: Oxford University Press.

Ellis, R. (1997). Second language acquisition. Oxford: Oxford University Press.
Espiga, J. (2001). O português dos campos neutrais: um estudo sociolingüístico da lateral pós-vocálica nos dialetos fronteiriços do Chuí e Santa Vitória do Palmar. Unpubished doctoral dissertation. Porto Alegre, PUCRS.

Espiga, J. (2003). Alafonia de /L/ no sul do Rio Grande do Sul: aspectos fonéticos e fonológicos. In D. Hora, and G. Collischomn (Org.), Teoria linguística: fonologia e outros temas. João Pessoa: Ed. Universitária/UFPB.

Fant, G. (1960). Acoustic theory of speech production. The Hague: Mouton.
Flege, J. E. (1987). The production of 'new' and 'similar' phones in a foreign language: evidence for the effect of equivalent classification. Journal of Phonetics, 15(I) 47-65.

Flege, J. E. (1995). Second language speech learning: theory, findings and problems. In W. Strange (Ed.), Speech perception and linguistic experience: issues in crosslanguage research (pp. 233-277). Maryland: York Press.

Fujimura, O. \& Erickson, D. (1997). Acoustic Phonetics. In W. J. Hendcastle and J. Laver (Eds.) (pp. 65 - 115), The Handbook of Phonetic Sciences, Oxford: Blackwell.

Gass, S. M. \& L. Selinker (1994). Second language acquisition: An introduction course. New Jersey, Lawrence Erlbaum Associates, Inc.

Giegerich J. H. (1992) English phonology: An introduction. Cambridge: Cambridge University Press.

Giles, S. \& Moll, K. (1975) Cineflourographic study of selected allophones of English /I/. Phonitica, 31, 206 - 227.

Halle, M. \& Mohanan, K. P. (1985). Segmental phonology of modern English. Linguistic Inquiry, 16, 57-116.

Harrington, J. \& Cassidy, S. (1999). Techniques in speech acoustics. Dordrecht/Boston/London: Kluwer Academic Publishers.

Hayward, K. (2000). Experimental Phonetics. Essex: Pearson Education.
Hooper, J. (1976). An introduction to natural generative phonology. New York: Academic Press.

Johnson W. \& Britain D. (2003). L Vocalization as a Natural Phenomenon. Essex Research Reports in Linguistics Vol. 44.

Johnson, K. (2003). Acoustic and Auditory Phonetics. Oxford: Blackwell Publishing Ltd.

Kluge, D. (2004). Perception and production of final nasal by Brazilians learners of English. Unpublished master's thesis. Universidade Federal de Santa Catarina.

Koerich R. D. (2002). Perception and Production of Vowel Epenthesis in Word-Final Single Consonant Codas. Unpublished doctoral dissertation. Florianópolis: UFSC.

Ladefoged, P.(1974). Elements of Acoustic Phonetics. Chicago: The University of Chicago Press.

Ladefoged, P.(2001). A Course in Phonetics. Chicago: The University of Chicago Press.
Ladefoged, P.(2005). Vowels and Consonants. Oxford: Blackwell Publishing Ltd.
Ladefoged, P., Maddieson, I. (1996). The sounds of the world's languages. Oxford: Blackwell Publishing Ltd.

Lamprecht, R. R. (2004). Aquisição Fonológica do Português: perfil de desenvolvimento e subsídios para terapia. Porto Alegre: Atmed Editora.

Lehiste, I. (1964). Acoustic characteristics of selected English consonants. Bloomington: Indiana University Research Center in Anthropology, Folklore and Linguistics

Lehman, M. E. \& Swartz, B. (2000). Electropalatographic and spectrographic descriptions of allophonic variants of /I/, Percept. Motor Skills 90, 47-61.

Lightbown, P. M. \& Spada, N. (1999). How languages are learned. Oxford: Oxford University Press.

Llisterri, J. \& Daudén, G. M. (1990). Phonetic interference in bilingual learning a third language: the production of lateral consonants. ERIC document Reproduction Service No. ED 324 909. Universitat Autonoma de Barcelona.

Macquarie University - Sydney - Speech Acoustic.
http:/www.ling.mq.edu.au/speech/ acoustic/consonants/approxweb.html
Major, R. C. (1987). Phonological similarity, markedness and rate of L2 acquisition. Studies in Second Language Acquisition, 9, 63-82.

Major, R. C. (1994). Current trends in interlanguage phonology. In M. Yavas (Ed), First and Second Language Acquisition (pp. 181 - 204).

Manz, C. (2001). The effacement and vocalization of pre-consonantal /I/ in Old French. Unpublished senior thesis. Swarthmore College - Philadelphia

Moore, D. (2004). The production of English final /I/ words by Brazilian learners of English. Unpublished monograph. Universidade Federal de Santa Catarina, Florianópolis.

Narayanan, S. S., Alwan A. A. \& Haker, K. (1997). Toward articulatory-acoustic models for liquid approximants based on MRI and EPG data. Part I. The laterals. Journal of Acoustical Society of America 101, 1064-1077.

Netto, F. W. (2001). Introdução à fonologia da língua Portuguesa. São Paulo: Hedra.
Rauber, A. S. (2002). The production of English initial /s/ clusters by Portuguese and Spanish EFL speakers. Unpublished master's thesis. Universidade Federal de Santa Catarina.

Rauber, A. S. (2006). Perception and production of English vowels by Brazilian EFL speakers. Unpublished doctoral dissertation. Universidade Federal de Santa Catarina.

Rebello, J. (1997). The acquisition of initial /s/ clusters by Brazilian EFL learners. Unpublished master's thesis. Universidade Federal de Santa Catarina.

Recasens, D. (1996). An articulatory-perceptual account of vocalization and elision of dark /l/ in the Romance languages. Language and Speech, 39 (1), 63-89.

Roca, I \& Johnson W. (1999). A course in phonology. Oxford: Blackwell Publishers.
Silva, A. H. P. (1996). Para a descrição fonético-acústica das líquidas no Português Brasileiro: dados de um informante Paulistano. Unpublished master's thesis. Unicamp.

Silva, A. H. P. (1997). Para a descrição fonético-acústica das líquidas no Português Brasileiro: dados de um informante Paulistano. In Sínteses - Revista dos Cursos de Pós-Graduação, Vol. 2, (pp 367 - 377).

Silveira, R. (2004) The influence of pronunciation instruction on the perception and production of English word-final consonants. Unpublished doctoral dissertation, Universidade Federal de Santa Catarina, Florianópolis.

Sproat, R. \& Fujimura, O. (1993). Allophonic variation in English /I/ and its implications for phonetic implementation. Journal of Phonetics, 21, 291-311.

Stevens, K. N. (1980). Acoustic correlates of some phonetic categories. Journal of Acoustical Society of America 68(3), 836-842.

Stevens, K. N. (1997). Articulatory - Acoustic - Auditory relationships. In W. J. Handcastle and J. Laver (eds.), The Handbook of Phonetic Sciences, (pp 462 506), Oxford: Blackwell Publishing Ltd.

Tasca, M. (2002). Variação e mudança do segmento lateral na coda silábica. In L. Bisol, \& C. Brescancini, (Org.), Fonologia e variação: recortes do português brasileiro (pp. 269 - 299), EDIPUCRS.

Wells, J. (1982) Accents of English. Cambridge: Cambridge University Press.
Yavas, M. (1993). First and second language phonology. San Diego, California: Singular Publishing Group, Inc.

Zhang, Z. and Espy-Wilson, C. Y. (2004). Vocal-track model for lateral sounds. Journal of Acoustical Society of America 115 (3), 1274-1280.

Xavier, R. P. (1989). Residual segmental error in English. Unpublished master's thesis, Universidade Federal de Santa Catarina, Florianópolis.

APPENDICES

APPENDIX A

Universidade Federal de Santa Catarina

Curso de Pós-Graduação em Inglês e Literaturas Correspondentes
Aluno: Jacir Paulo Baratieri
Orientadora: Dr ${ }^{\text {a }}$ Rosana Denise Koerich

QUESTIONÁRIO SOBRE O PERFIL DOS PARTICIPANTES

Por favor, responda às perguntas abaixo. Este questionário visa somente obter informações que serão utilizadas para direcionar a análise dos dados da pesquisa conduzida pelo aluno acima citado. Em nenhuma hipótese os nomes dos participantes serão divulgados, pois se trata de uma pesquisa quantitativa. Solicito informar nome, telefone e e-mail somente para, no caso de necessitar alguma informação adicional, poder entrar em contato com você posteriormente.

1. NOME: \qquad 2. DATA: \qquad
2. IDADE: \qquad 4. SEXO: FEM / MASC 5. TEL: \qquad
Responda às perguntas abaixo tendo em mente que o objetivo é traçar um perfil de seu contato com a língua inglesa. Tente ser o mais específico/a possível. Faça qualquer tipo de comentário que julgar interessante para dar uma visão fiel deste contato.
3. Estudou Inglês no colégio? SIM / NÃO
4. Desde que série?
5. Qual sua idade na época? \qquad
6. As aulas exploravam comunicação escrita e oral?
7. Fez curso de inglês? SIM / NÃO
8. Quais cursos/escolas?

CURSOS						ESCOLAS	QUANTOS SEMESTRES?	QUANTAS HORAS?	
C	A	B	I	A	OUTRO			SEMANA	SEMESTRE
	,				B=bá	co I=intern	diário $\mathrm{A}=\mathrm{avan}$	çado	

12. Faz algum curso de inglês no momento?

SIM / NÃO
13. Qual nível/semestre/fase que freqüenta no momento?
14. Quantas horas semanais tem este curso?
15. Quantas horas por semana, além do curso, você dedica ao estudo da língua inglesa / a atividades para aperfeiçoar seu inglês?
16. Tem vivência em país de língua inglesa? (mais de 1 mês) SIM / NÃO
17. Por quanto tempo? \qquad Qual sua idade na época?
18. Freqüentou escola naquele país? SIM / NÃO
19. Que tipo de escola/ curso?
20. Conversa com freqüência em inglês com outros brasileiros?

SIM / NÃO
21. Conversa com frequiência em inglês com falantes nativos?

SIM / NÃO
22. Assiste filmes sem dublagem com freqüência? SIM / NÃO
23. Ouve música em inglês com freqüência? SIM / NÃO
28. Canta em inglês? SIM / NÃO
24. Transcreve (tira) letras de músicas em inglês? SIM / NÃO
25. Estuda, estudou, ou tem contato com outra língua estrangeira? SIM / NÃO
26. Em que contexto? (escola, na família...)
27. Qual língua? \qquad
28. Em que cidade foi criado/a?
29. Qual seu sotaque no português? (por exemplo: norte/ nordeste/sul do país, do estado)

Paranaense	Catarinense	Gaúcho	Carioca	Paulista	Outro

Universidade Federal de Santa Catarina
Curso de Pós-Graduação em Inglês e Literaturas Correspondentes
Aluno: Jacir Paulo Baratieri
Orientadora: Dr ${ }^{\text {a }}$ Rosana Denise Koerich

PARTICIPANTS PROFILE QUESTIONNAIRE

Please answer the questions below. This questionnaire aims only at gathering information that will help in the analysis of the research data. Under no circumstances will the names of the participants be revealed, as this research is strictly quantitative. I request your name and phone number only for the purpose of contacting you later in case more information is needed.

1. NAME: \qquad 2. DATE: \qquad
2. AGE: \qquad 4. SEX: FEM / MALE
3. PHONE: () -
\qquad
Please, answer the questions below, bearing in mind that they will help to characterize your contact with English. Be as specific as possible. Add any comment that may be important to give a complete and accurate view of this contact.
4. Did you study English at school? YES / NO
5. When did you start? \qquad
6. How old were you at the time?
7. Did the classes develop both written and oral expression?
8. Have you taken a language course? YES / NO
9. What course/language school?

Courses									SCHOOLS	HOW MANY SEMESTERS?		HOW MANY HOURS?	
C	A	B	I	A	OTHER	SEMESTER							
C=Child A=adolescents B=basic I=intermediate A=advanced													

12. Do you study English currently? YES / NO
13. Which level/semester/ are you enrolled currently? \qquad
14. How many class hours a week are devoted to the course?
15. How many hours a week, besides the course hours, do you dedicate to the study of English/to activities to improve your English?
16. Have you lived in an English speaking country? (longer than 1 m) YES / NO
17. For how long? \qquad How old were you at the time? \qquad
18. Did you go to school there? YES / NO
19. What kind of school/ course was it?
20. Do you often speak English with other Brazilians? YES / NO
21. Do you often speak English with native speakers? YES / NO
22. Do you often watch films without dubbing? YES / NO
23. Do you often listen to music in English? YES / NO
24. Do you sing in English? YES / NO
25. Do you try to write the lyrics to the songs you hear? YES / NO
26. Do you study/have you studied/do you have contact with any other FL? YES / NO
27. In what context? (school, family...)
28. What language?
29. Where did you grow up? \qquad
30. What is your regional accent? (in Portuguese)

Paranaense	Catarinense	Gaúcho	Carioca	Paulista	Other

APPENDIX B

DIRECTED SPEECH PRODUCTION TEST SLIDES

Instruction material

Slide 1:	Click F5
Slide 2:	Welcome
Slide 3:	Instruções
Slide 4:	1. Uma palavra aparecerá na tela do computador e permanecerá por

I read and explained the slide.

4 segundos;
2. Nesse tempo você falará uma sentença na qual você inserirá a palavra que está na tela do computador.
3. Procure falar a sentença normalmente, como se estivesse conversando com um amigo.
4. Após os 4 segundos, uma nova palavra aparecerá na tela e você segue os mesmos procedimentos anteriores.
5. Você poderá praticar antes de começar a gravação;
6. As primeiras 3 gravações não serão consideradas;

Training material

Slide 1: I read and	Aparecerá na tela	Você fala:
explained the	bed	Bed, I said bed.
	get	Get, I said get.
	tell John	Tell John, I said tell John.
	well	Well, I said well.

Slide 2:	Help, I said help	a vogal
I explained		
the syllable		será sempre
peak		
pronunciation		$/ \varepsilon /$
and the		help
participants		belk
practiced with		tell Paul
help, belk and		felb
tell Paul		mels
Slide 3:	*, I said *	melg
Slide 4:	, I said *	Tell Gyna
Slide 5:	* I said *	selj
Slide 6:	*, I said *	welsh
Slide 7:	, I said *	
Slide 8:	*, I said *	

[^20]Performing material

Slide 1:	*, I said *	bed
Slide 2:	*, I said *	Tell Gyna
Slide 3:	*, I said *	get
Slides 4 to 34	*, I said *	bell, help, tell Peter, felb, tell Bob, helm, tell Mary, melt, sell, tell Tom, held, tell Dan, heln, tell Nan, else, tell Sam, mels, tell Zak, belk, tell Kate, melg, tell Garry, shell, self, tell Faby, selv, tell Viny, welsh, tell Sharon, selj, tell Gyna
Slide 35:	Respire um pouco, aguarde alguns segundos...	
Slide 36:	*, I said *	book
Slide 37:	*, I said *	Tell Joe
Slide 38:	*, I said *	dog
Slides 39 to 69	*, I said *	help, bell, selj, tell Faby, welsh, tell Mary, selv, tell Gyna, self, tell Garry, shell, tell Viny, felb, tell Tom, held, tell Nan, mels, tell Sharon, else, tell Peter, heln, tell Sam, sell, tell Zak, belk, tell Dan, helm, tell Bob, melg, tell Kate, melt

APPENDIX C

LIST OF CODES USED TO LABEL THE PARTICIPANTS' PRODUCTIONS

Codes ${ }^{33}$	Description	$\begin{gathered} \text { Considered } \\ \text { missing value }^{34} \end{gathered}$
L	Production with the presence of the typical lateral consonantal gesture only considered not vocalized at all.	No
Lwo or Lw	Production with the presence of the consonantal and the vocalic gestures (lip rounding) - considered partially vocalized The difference between them is in vowel like quality: 'wo' more similar to $/ \mathrm{o} /$ and ' w ' more similar to $/ \mathrm{u} /$.	No
Wo or W	Production with the presence of the vocalic gesture only (tongue retraction plus lip rounding) - considered completely vocalized - The difference between them is in vowel like quality: 'wo' more similar to $/ \mathrm{o} /$ and ' w ' more similar to $/ \mathrm{u} /$.	No
N^{35}	Nasalization	Yes
BP	Problem in identifying the boundary	Yes
MS	Murmured sound	Yes
NM	Nasal murmur	Yes
M	Mispronunciation	Yes
CV	Creaky voice	Yes
BF	Bad formants formation	Yes
NL	No link between the two words	Yes
TF	Too fast production	Yes
NI	Background noise interference	Yes
BI	Bad intonation	Yes

[^21]
APPENDIX D

VARIABLES OPERATIONALIZATION

SPSS - File $\mathbf{1}^{36}$		
Nominal Variables - Levels		Dependent Variables - Scale
1.Participants	1 to 20	
2.Instruction	1. 456 h	1. total duration
	2. 513 h	2. mean_F1 peak interval
3.Gender		3. mean_F2 peak interval
	4. female	4. mean_F3 peak interval
2. Allophone produced	1. L	5. ratio F3 peak/F1 peak
	2. Lwo	6. ratio F2 peak /F1 peak
	3. Lw	7. mean_F1 L-interval
	4. Wo	8. mean_F2 L- interval
	5. W	9. mean_F3 L- interval
	99. missing value	10. ratio F3 L / F1 L
3. Nasal feature	1. yes	11. ratio F2 L / F1 L
	2. no	12. ratio F2 peak / F2 L-interval
4. Following context	1. 16. /lz/	13. Degree of vocalization - grade (calculated by computing the dependent variable " 2 . allophone produced". The allophone L was graded as 0 (zero); the allophones Lwo and Lw were graded as 5 (five) and the allophones Wo and W were graded as 10 (ten)).
	1. $/ 1 / 17 . / l \mathrm{zl}$	
	2. $/ \mathrm{lp} /$ 18. /lk/	
	3. $/ 1 \mathrm{p} /$ 19. $/ 1 \mathrm{k} /$	
	4. $/ \mathrm{lb} / \mathrm{l} \quad 20 . / \mathrm{lg} /$	
	5. $/ \mathrm{l} / \mathrm{b} / 21 . / \mathrm{lg} /$	
	6. $/ \mathrm{lm} / \mathrm{l}$ 22. /lif/	
	7. $/ 1 \mathrm{~m} / \quad$ 23. $/ 1 \mathrm{f} /$ 8. $/ \mathrm{lt} / \quad 24 . / \mathrm{lv} /$	
	9. $/ 1 \mathrm{t} / \mathrm{l} \quad 25 . / l \mathrm{v} /$	
	$10 . / \mathrm{ld} /$$11 . / 1 \mathrm{~d} /$	
	12./ln/ 27./1 S/	
	$13 . / 1 \mathrm{n} / 28.113 /$	
	$15 . / 1 \mathrm{~s} / 2 \mathrm{l}$ 29./1 $3 /$	
	1. final L	
	2. LConsonant	
5. Following Context 1	3. L_Consonant	
6. Voicing	1. + voiced	
	2. - voiced	
	99. missing value	
7. Manner of articulation	1. Plosive 2. nasal 3. fricative	
8. Place of articulation	1. bilabial	
	2. labialdental	
	3. alveolar	
	4. postalveolar 5. velar	

[^22]
SPSS file 2

Lines:	20 lines - Participants (1 to 20)
Columns:	Dependent variables - grades ${ }^{37}$
Contexts:	1. final L 2. $\mathrm{L}+\mathrm{Cww}$ (consonant within the word) 3. L + Caw (consonant across the word)
Voicing:	4. +vd Cww 5. +vd Caw 6. +vd total 7. -vd Cww 8. -vd Caw 9. -vd total
Place of articulation	10. bilabial total 11. labial-dental total 12. alveolar total 13. post-alveolar total 14. velar total 15. bilabial Cww 16. labial-dental Cww 17. alveolar Cww 18. post-alveolar Cww 19. velar Cww 20. bilabial Caw 21. labial-dental Caw 22. alveolar Caw 23. post-alveolar Caw 24. velar Caw
Manner of articulation	25. plosive total 26. nasal total 27. fricative total 28. plosive Cww 29. nasal Cww 30. fricative Cww 31. plosive Caw 32. nasal Caw 33. fircative Caw

[^23]
APPENDIX E

COMPLETE TABLES OF REALIZATIONS OF /// TAKING INTO ACCOUNT THE FOLLOWING CONTEXT IN TERMS OF VOICING

/// followed by voiced consonant															
	Different realizations of /l/ followed by a voiced consonant														
	Within the word					Across the word					Both contexts				
	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G
1	29	--	26	3	5.52	32	--	20	12	6.88	61	--	46	15	6.23
2	22	--	11	11	7.50	27	--	15	12	7.22	49	--	26	23	7.35
3	21	2	17	2	5.00	30	--	28	2	5.33	51	2	45	4	5.20
4	25	--	25	--	5.00	30	--	15	15	7.50	55	--	40	15	6.36
5	22	--	14	8	6.82	32	--	22	10	6.56	54	--	36	18	6.67
6	22	--	15	7	6.59	26	--	9	17	8.27	48	--	24	24	7.50
7	17	2	14	1	4.71	25	12	13	--	2.60	42	14	27	1	3.45
8	21	--	21	--	5.00	30	--	24	6	6.00	51	--	45	6	5.59
9	17	1	15	1	5.00	28	--	28	--	5.00	45	1	43	1	5.00
10	22	--	14	8	6.82	32	--	25	7	6.09	54	--	39	15	6.39
11	23	--	18	5	6.09	22	1	15	6	6.14	45	1	33	11	6.11
12	16	--	16	--	5.00	26	--	22	4	5.77	42	--	38	4	5.48
13	17	--	15	2	5.59	23	--	7	16	8.48	40	--	22	18	7.25
14	28	3	18	7	5.71	32	--	12	20	8.13	60	3	30	27	7.00
15	17	--	6	11	8.24	28	--	12	16	7.86	45	--	18	27	8.00
16	20	--	20	--	5.00	29	--	26	3	5.52	49	--	46	3	5.31
17	24	--	19	5	6.04	29	--	13	16	7.76	53	--	32	21	6.98
18	16	--	12	4	6.25	26	--	10	16	8.08	42	--	22	20	7.38
19	18	--	17	1	5.28	25	--	17	8	6.60	44	--	35	9	6.02
20	22	--	18	4	5.91	28	--	15	13	7.32	49	--	32	17	6.73
Total	419	8	331	80		560	13	348	199		979	21		279	
\%	100	1.9	79.0	19.1		100	2.3	62.1	35.5		100	2.1	69.4	28.5	
			ade M	edian	5.65					6.87					6.38
		Grad	Mini	mum	4.71					2.60					3.45
		Grad	Maxi	mum	8.24					8.48					8.00
Grade ($\mathrm{L}=0, \mathrm{Lw}=5$ and $\mathrm{W}=10$) - - Number of production (NP)															

APPENDIX F

COMPLETE TABLES OF REALIZATIONS OF /// TAKING INTO ACCOUNT THE FOLLOWING CONTEXT IN TERMS OF PLACE OF ARTICULATION

BILABIAL															
	Different realizations of /l/ followed by a bilabial consonant														
	Within the word					Across the word					Both contexts				
	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G
1	11	--	6	5	7.27	12	--	2	10	9.17	23	--	8	15	8.26
2	8	--	7	1	5.63	12	--	1	11	9.58	19	--	2	17	9.47
3	7	--	1	6	9.29	11	--	8	3	6.36	19	--	15	4	6.05
4	9	--	6	3	6.67	12	--	2	10	9.17	21	--	8	13	8.10
5	8	--	--	8	10.00	12	--	4	8	8.33	20	--	4	16	9.00
6	8	--	2	6	8.75	9	--	--	9	10.00	17	--	2	15	9.41
7	8	--	6	2	6.25	12	6	6	--	2.50	20	6	12	2	4.00
8	5	--	3	2	7.00	12	--	3	9	8.75	17	--	6	11	8.24
9	8	--	8	--	5.00	11	--	10	1	5.45	19	--	18	1	5.26
10	8	--	2	6	8.75	12	--	3	9	8.75	20	--	5	15	8.75
11	10	--	5	5	7.50	12	--	3	9	8.75	22	--	8	14	8.18
12	8	--	4	4	7.50	12	--	6	6	7.50	20	--	10	10	7.50
13	7	--	3	4	7.86	11	--	--	11	10.00	18	--	3	15	9.17
14	11	--	3	8	8.64	12	--	1	11	9.58	23	--	4	19	9.13
15	8	--	--	8	10.00	12	--	--	12	10.00	20	--	--	20	10.00
16	6	--	6	--	5.00	11	--	7	4	6.82	17	--	13	4	6.18
17	10	--	4	6	8.00	12	--	3	9	8.75	22	--	7	15	8.41
18	6	--	2	4	8.33	11	--	2	9	9.09	17	--	4	13	8.82
19	8	--	3	5	8.13	11	--	3	8	8.64	19	--	6	13	8.42
20	8	--	3	5	8.13	12	--	1	11	9.58	20	--	4	16	9.00
Total	162	0	74	88		231	6	65	160		393	6	139	248	
\%	100.0	0.0	45.7	54.3		100.0	2.6	28.1	69.3		100.0	1.5	35.4	63.1	
Grade median					7.68					8.34					8.07
Grade Minimum					5.00					2.50					4.00
Grade Maximum					10.00					10.00					10.00

LABIAL-DENTAL

	Different realizations of $/ 1 /$ followed by a labialdental consonant														
	Within the word					Across the word					Both contexts				
	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G
1	8	--	8	--	5.00	8	--		8	10.00	16	--	8	8	7.50
2	6	--	2	4	8.33	7	--	6	1	5.71	13	--	8	5	6.92
3	6	--	3	3	7.50	8	--	7	1	5.63	14	--	10	4	6.43
4	8	--	8	--	5.00	8	--	2	6	8.75	16	--	10	6	6.88
5	8	--	5	3	6.88	8	--	4	4	7.50	16	--	9	7	7.19
6	8	--	6	2	6.25	8	--	3	5	8.13	16	--	9	7	7.19
7	8	--	8	--	5.00	8	6	2	--	1.25	16	6	10	--	3.13
8	7	--	7	--	5.00	7	--	4	3	7.14	14	--	11	3	6.07
9	8	--	6	2	6.25	8	--	7	1	5.63	16	--	13	3	5.94

POST-ALVEOLAR

	Different realizations of /1/ followed by a post-alveolar consonant														
	Within the word					Across the word					Both contexts				
	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G
1	8	--	8		5.00	8	--	7	1	5.63	16	--	15	1	5.31
2	8	--	2	6	8.75	5	--	2	3	8.00	13	--	4	9	8.46
3	8	1	5	2	5.63	8	--	7	1	5.63	16	1	12	3	5.63
4	8	--	7	1	5.63	8	--	6	2	6.25	16	--	13	3	5.94
5	8	--	7	1	5.63	8	--	7	1	5.63	16	--	14	2	5.63
6	8	--	6	2	6.25	7	--	2	5	8.57	15	--	8	7	7.33
7	4	--	2	2	7.50	6	2	4	--	3.33	10	2	6	2	5.00
8	8	1	7	--	4.38	8	--	8	--	5.00	16	1	15	--	4.69
9	4	--	4	--	5.00	8	--	7	1	5.63	12	--	11	1	5.42
10	8	--	7	1	5.63	8	--	7	1	5.63	16	--	14	2	5.63
11	4	1	1	2	6.25	4	--	4		5.00	8	1	5	2	5.63
12	4	--	3	1	6.25	4	--	2	2	7.50	8	--	5	3	6.88
13	8	--	6	2	6.25	5	--	3	2	7.00	13	--	9	4	6.54
14	8	--	5	3	6.88	8	--	5	3	6.88	16	--	10	6	6.88
15	4	--	--	4	10.00	5	--	5	--	5.00	9	--	5	4	7.22
16	6	--	6	--	5.00	8	--	8	--	5.00	14	--	14	--	5.00
17	8	--	5	3	6.88	5	--	2	3	8.00	13	--	7	6	7.31
18	7	--	2	5	8.57	5	--	--	5	10.00	12	--	2	10	9.17
19	6	--	6	--	5.00	3	--	--	3	10.00	9	--	6	3	6.67
20	8	--	7	1	5.63	8	--	5	3	6.88	16	--	12	4	6.25
Total	135	3	96	36		129	2	91	36		264	5	187	72	
\%	100.0	2.2	71.1	26.7		100.0	1.6	70.5	27.9		100.0	1.9	70.8	27.3	
Grade median					6.30					6.53					6.33
Grade Minimum					4.38					3.33					4.69
Grade Maximum					10.00					10.00					9.17

VELAR

曹 路	Different realizations of /l/ followed by a velar consonant														
	Within the word					Across the word					Both contexts				
	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G
1	8	--	8	--	5.00	8	--	7	1	5.63	16	--	15	1	5.31
2	8	--	7	1	5.63	6	--	4	2	6.67	14	--	11	3	6.07
3	8	2	5	1	4.38	8	--	8		5.00	16	2	13	1	4.69
4	8	--	6	2	6.25	8	--	5	3	6.88	16	--	11	5	6.56
5	8	--	2	6	8.75	8	--	4	4	7.50	16	--	6	10	8.13
6	8	--	4	4	7.50	8	--	--	8	10.00	16	--	4	12	8.75
7	6	--	4	2	6.67	7	3	4	--	2.86	13	3	8	2	4.62
8	8	--	7	1	5.63	8	--	7	1	5.63	16	--	14	2	5.63
9	8	1	5	2	5.63	8	--	8	--	5.00	16	1	13	2	5.31
10	8	--	4	4	7.50	8	--	5	3	6.88	16	--	9	7	7.19
11	8	--	8	--	5.00	6	--	6	--	5.00	14	--	14	--	5.00
12	8	--	4	4	7.50	8	--	5	3	6.88	16	--	9	7	7.19
13	8	--	8	--	5.00	7	--	--	--	10.00	15	--	8	7	7.33

Grade ($\mathrm{L}=0, \mathrm{Lw}=5$ and $\mathrm{W}=10$) - - Number of production (NP)
$\mathrm{G}=(\mathrm{NP}$ ‘L' * grade ‘L’) + (NP ‘Lw’ * grade ‘Lw’) + (NP ‘W’ * grade ‘W’) / N

APPENDIXF.a

PEARSON CORRELATION BETWEEN VOICED vs. VOICELESS AND PLACE OF ARTICULATION

Correlations			VOICED				
			bilabial	labiodental	alveolar	post-alveolar	velar
$\begin{aligned} & \text { n } \\ & \text { In } \\ & \sqrt[10]{0} \\ & 0 \\ & 0 \end{aligned}$	bilabial	Pearson Correlation	.853(**)				
		Sig. (1-tailed)	0				
		N	20				
	labiodental	Pearson Correlation		.747(**)			
		Sig. (1-tailed)		0			
		N		20			
	alveolar	Pearson Correlation			.770(**)		
		Sig. (1-tailed)			0		
		N			20		
	postalveolar	Pearson Correlation				.470(*)	
		Sig. (1-tailed)				0.018	
		N				20	
	velar	Pearson Correlation					.674(**)
		Sig. (1-tailed)					0.001
		N					20

** Correlation is significant at the 0.01 level (1-tailed).

* Correlation is significant at the 0.05 level (1-tailed).

APPENDIX G

COMPLETE TABLES OF REALIZATIONS OF /// TAKING INTO ACCOUNT THE FOLLOWING CONTEXT IN TERMS OF MANNER OF ARTICULATION

NASAL															
边 號	Different realizations of /l/ followed by a nasal consonant														
	Within the word					Across the word					Both contexts				
	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G
1	5	--	3	2	7.00	8	--	5	3	6.88	13	--	8	5	6.92
2	--	--	--	--	no	4	--	1	3	8.75	4	--	1	3	8.75
3	--	--	--	--	no	8	--	7	1	5.63	8	--	7	1	5.63
4	1	--	1	--	5.00	6	--	3	3	7.50	7	--	4	3	7.14
5	--	--	--	--	no	8	--	6	2	6.25	8	--	6	2	6.25
6	--	--	--	--	no	4	--	--	4	10.00	4	--	--	4	10.00
7	--	--	--	--	no	5	1	4		4.00	5	1	4	--	4.00
8	--	--	--	--	no	6	--	4	2	6.67	6	--	4	2	6.67
9	--	--	--	--	no	4	--	4		5.00	4	--	4	--	5.00
10	1	--	--	1	10.00	8	--	5	3	6.88	9	--	5	4	7.22

11	5	--	3	2	7.00	7	--	3	4	7.86	12	--	6	6	7.50
12	--	--	--	--	no	6	--	5	1	5.83	6	--	5	1	5.83
13	--	--	--	--	no	4	--	--	4	10.00	4	--	--	4	10.00
14	5	--	--	5	10.00	8	--	--	8	10.00	13	--	--	13	10.00
15	--	--	--	--	no	8	--	2	6	8.75	8	--	2	6	8.75
16	--	--	--	--	no	6	--	6	--	5.00	6	--	6	--	5.00
17	2	--	--	2	10.00	8	--	3	5	8.13	10	--	3	7	8.50
18	--	--	--	--	no	7	--	2	5	8.57	7	--	2	5	8.57
19	--	--	--	--	no	4	--	4	--	5.00	4	--	4	--	5.00
20	--	--	--	--	no	5	--	1	4	9.00	5	--	1	4	9.00
Total	19	0	7	12		124	1	65	58		143	1	72	70	
\%	100.0	0.0	36.8	63.2		100.0	0.8	52.4	46.8		100.0	0.7	50.3	49.0	
Grade median					8.17					7.28					7.29
Grade Minimum					5.00					4.00					4.00
Grade Maximum					10.00					10.00					10.00

FRICATIVE															
	Different realizations of /l/ followed by a fricative consonant														
	Within the word					Across the word					Both contexts				
	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G	N	'L'	'Lw'	'W'	G
1	24	--	24		5.00	24	--	15	9	6.88	48	--	39	9	5.94
2	19	--	8	11	7.89	20	--	15	5	6.25	39	--	23	16	7.05
3	21	1	15	5	5.95	23	1	20	2	5.22	44	2	35	7	5.57
4	23	--	20	3	5.65	24	--	16	8	6.67	47	--	36	11	6.17
5	20	--	16	4	6.00	24	--	18	6	6.25	44	--	34	10	6.14
6	22	--	15	7	6.59	23	--	10	13	7.83	45	--	25	20	7.22
7	18	5	11	2	4.17	21	12	9	--	2.14	39	17	20	2	3.08
8	23	1	22	--	4.78	23	--	20	3	5.65	46	1	42	3	5.22
9	17	--	15	2	5.59	24	--	22	2	5.42	41	--	37	4	5.49
10	21	--	13	8	6.90	24	1	20	3	5.42	45	1	33	11	6.11
11	18	2	12	4	5.56	16	--	16	--	5.00	34	2	28	4	5.29
12	16	--	12	4	6.25	20	--	15	5	6.25	36	--	27	9	6.25
13	19	--	12	7	6.84	21	--	11	10	7.38	40	--	23	17	7.13
14	22	2	14	6	5.91	24	--	9	15	8.13	46	2	23	21	7.07
15	17	--	4	13	8.82	20	--	12	8	7.00	37	--	16	21	7.84
16	19	--	19	--	5.00	23	--	21	2	5.43	42	--	40	2	5.24
17	22	--	16	6	6.36	21	--	9	12	7.86	43	--	25	18	7.09
18	17	--	9	8	7.35	19	--	8	11	7.89	36	--	17	19	7.64
19	18	--	18	--	5.00	19	--	8	11	7.89	37	--	26	11	6.49
20	21	--	17	4	5.95	23	--	15	8	6.74	44	--	32	12	6.36
Total	397	11	292	94		436	14	289	133		833	25	581	227	
\%	100.0	2.8	73.6	23.7		100.0	3.2	66.3	30.5		100.0	3.0	69.7	27.3	
Grade median					6.08					6.36					6.22
Grade Minimum					4.17					2.14					3.08
Grade Maximum					8.82					8.13					7.84

Grade ($\mathrm{L}=0, \mathrm{Lw}=5$ and $\mathrm{W}=10$) - - Number of production (NP)
$\mathrm{G}=(\mathrm{NP}$ ‘ L ' * grade ‘ L ’) + (NP ‘Lw’ * grade ‘Lw’) + (NP ‘W’ * grade ‘W’) / N

APPENDIX H

REALIZATIONS OF /I/ TAKING INTO ACCOUNT:

 MANNER vs. PLACE OF ARTICULATION| Contexts | | | | Places of articulation | | | | | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | bilabial | Labial-dental | alveolar | Postalveolar | velar | |
| | L | | plosive | -- | -- | 6 | -- | 3 | 9 |
| | | | nasal | -- | -- | -- | -- | -- | -- |
| | | | fricative | -- | -- | 8 | 3 | -- | 11 |
| | | | Total | -- | -- | 14 | 3 | 3 | 20 |
| | Lw | $\begin{aligned} & \dot{\varpi} \\ & \text { E } \\ & \text { E } \end{aligned}$ | plosive | 70 | -- | 149 | -- | 104 | 323 |
| | | | nasal | 4 | -- | 3 | -- | -- | 7 |
| | | | fricative | -- | 103 | 93 | 96 | -- | 292 |
| | | | Total | 74 | 103 | 245 | 96 | 104 | 622 |
| | W | $\begin{aligned} & \dot{\varpi} \\ & \text { 茞 } \end{aligned}$ | plosive | 81 | -- | 4 | -- | 51 | 136 |
| | | | nasal | 7 | -- | 5 | -- | -- | 12 |
| | | | fricative | -- | 45 | 13 | 36 | -- | 94 |
| | | | Total | 88 | 45 | 22 | 36 | 51 | 242 |
| 2
 0
 0
 0
 3
 1
 0
 0
 0
 0
 0 | L | $\begin{aligned} & \dot{\Xi} \\ & \text { E } \\ & \text { E } \end{aligned}$ | plosive | 5 | -- | 3 | -- | 3 | 11 |
| | | | nasal | 1 | -- | -- | -- | -- | 1 |
| | | | fricative | -- | 6 | 6 | 2 | -- | 14 |
| | | | Total | 6 | 6 | 9 | 2 | 3 | 26 |
| | Lw | $\begin{aligned} & \dot{\Xi} \\ & \text { E } \\ & \text { E } \end{aligned}$ | plosive | 28 | -- | 123 | -- | 78 | 229 |
| | | | nasal | 37 | -- | 28 | -- | -- | 65 |
| | | | fricative | -- | 68 | 130 | 91 | -- | 289 |
| | | | Total | 65 | 68 | 281 | 91 | 78 | 583 |
| | W | | plosive | 123 | -- | 25 | -- | 69 | 217 |
| | | | nasal | 37 | -- | 21 | -- | -- | 58 |
| | | | fricative | -- | 81 | 16 | 36 | -- | 133 |
| | | | Total | 160 | 81 | 62 | 36 | 69 | 408 |

MEAN of /I/ VOCALIZATION

	Manner of Articulation	Bilabial	Labial- dental	alveolar	Post- alveolar	velar
		7,68	--	4,94	--	6,52
Within	nasal	8,18	--	8,13	--	--
	naross	pricative	--	6,52	5,22	6,22
Word	nasal	9,01	--	5,84	--	--35
	fricative	7,50	--	6,36	--	--
Both	plosive	8,24	7,42	5,23	6,32	--
	nasal	7,50	--	5,32	--	6,85
	fricative	--	6,98	5,28	--	--

Mean calculation: $((\mathrm{N}$ of $\mathrm{Lw} * 5)+(\mathrm{N}$ of $\mathrm{W} * 10) /(\mathrm{N}$ of $\mathrm{L}+\mathrm{N}$ of $\mathrm{Lw}+\mathrm{N}$ of W$))$

APPENDIX I

DIFFERENT REALIZATIONS OF /I/ BY PARTICIPANTS AND BY CONTEXTS

		Participants																					Total
		1	2	3	4	5	6	7	8	9	10	11	12	13	14		15	16	17	18	19	20	
	Final L		1	4				3	1			1								1			11
	1 p							3															3
	1 b							2															2
	1 m							1															1
	It			2					2				1										5
	Id														1								1
	1 d							2				1											3
	Is							3				1											4
	1 s			1				3			1												5
-	lz							2							2								4
	1 z							1															1
	1 k							2															2
	lg			2						1													3
	lg							1															1
	1 f							3															3
	1 v							3															3
	Ish			1					1			1											3
	1 j							2															2
	tal		1	10				31	4	1	1	4	1		3					1			57
	Final L	9	3	7	7	5	2	6	9	10		4	6	3	4			6	1	2	7	3	94
	lp	2		3	1		1	2	2	4	1	2		1				3	1			1	24
	1 p			2				1		2			1					1		1			8
	lb	3		3	1			3		4	1	1	4	2	3				2	1	3	2	33
	1 b			3				2	1	4	1	2	1		1			2	1			1	19
	lm											2											2
	1 m	2		3	2	3		2	2	2	2	1	4					3	1	1	3		31
	It	2	1	2		1	1	3	2	4	1	4	3	3	4		1		3	4	4	3	46
	1 t	1		3		4		3		3	2	3	4	1	1		2			1	1	2	31
	Id	4		4	1	3	1	1	3	4	3	3	4	2	2				3	2	3	2	45
	1 d	3		3		2		1	4	4	4		4	2	2		3	2	3	2	2	2	43
	In	1										1											2
8	1 n	1		4		1			1	1	1	2	1				2		1	1		1	17
	Is	3	1	4	1	2		1	4	4		3	2	4	2			2	4	1	3	2	43
	1 s	4		3		4		1	3	4	1	4	4	2	1			4	4	1		3	43
	lz	3		2	1				3	1	1	2						2	2		1	1	19
	1 z	1		2				1	2	4	1	1	4		1							1	18
	Ik	3		1	1	1		1	3	3	1	4		4				3			1	3	29
	1 k			3		2			3	4		3	1				1						17
	lg	2	1	2	1		3	1	4	2	1	4	4	1	1		1	1	2	1	3	2	37
	lg	2		3		1			1	2	1	3	2					1	1		1	1	19
	If	4		2	1		1	4	3	2		2	3		2			2	1	1	4	2	34
	1 f			3					1	3	1	4	1					3					16
	Iv	3			3	2		1	2	4		4	4	2	3			4	4	3	2	3	44
	1 v			2	1	2			1	3	1	2	3						1			2	18
	Ish	2		1	2	1			2	4	2	1	3	1				1	2		1	1	24

	1 sh	3		4		2			2	3	3	1	3			2	2			1				2	30
	lj	3		3	3	1				2		1				3	1				3	1	2	2	25
	1 j	1		1		1					3		1				1								8
	Total	62	6	73	26	38	9	36	36	61	88	28	66	65		33	31	10		41	40	23	41	42	819
E	final L	3			4	1	7			2										1			1	1	20
	lp		1																	1					2
	1 p										1														1
	lb			1	3		1		1	1										2	1	1			11
	lm	1			1																				2
	1 m		1			1			1		1									1	1				6
	It	2	3		4	3	3		1			3						2		4	1			1	27
	1 t	3			4				1	4		2				1		1		4	1	2	2	1	26
	Id		3		3	1	3		3	1		1	1			1	1	4		4	1	1	1	2	31
	1 d	1	4	1	1	1	2		1				2				1	1		2	1	1	2	2	23
	In	1																							1
	1 n	2			1	1			1	1		2								2			1		11
	Is	1	1				2					3					1	3		2		2	1	1	17
	1 s		4		4		2			1		2				2		3				1	1	1	21
	Iz	1	2	1	3	2	1			1		1					1	1							14
	1 z	3	3	1	4	3	3		1	2		3	1			4	2	3		3	2	3	4	3	48
	lk	1	3	2	1				1														1	1	10
	1 k	3	1	1	3				2			1													11
	lg	2	3		3	1	1		1			2				3	3			3	1	2	1	2	28
	lg	2	3	1	2	1			2	3	2	3					2	2		3	1		1	1	31
	If			1	3	2	2					1								1				1	11
	1 f		3		1		1		1			1						1				1			9
	lv	1	2		1	1	3		3	2													1		14
	lv		3	2		2	2		1	2	1	3								3		2	3		25
	Ish	2	2		1	2	4		2	1		1				1	1			1		1	2	3	24
	1 sh	1	1		2	1			2	1		3						4		3	2			2	22
	lj	1		1	1	3	2			2		3				1	3			4			1	1	23
	1 j	2	1	2	4	3	2			4	1	3				1	2	1		4				1	31
	Total	33	44	14	54	29	41	25	25	28	6	38	4			14	17	26		48	12	17	23	24	500
0^{0}	final L		3	1		6	3		3		2	12	7			9	8	9		3	11	9	4	7	103
	lp	2	1	1	2	3	3		2	2		3	2			3	3	3			3	3	4	3	47
	1 p	3	1	2	2	4	1			3	1	4	4			2	4	4		2	4	2	3	4	53
	lb	1	1			4	2					3	3			1	1	2			1		1	2	22
	1 b	4	2		3	4				3		3	2			3	2	3		2	3	2	2	3	44
	lm	2															2				1				5
	1 m	2	1	1	1		1			2		2	3			3	4	4			2	3		4	33
	It															1		1							2
	1 t						1				1					1	3	1			3		1		11
	Id		1																			1			2
	1 d				1	1	1									1	1					1			6
	In											1	2												3
	1 n	1			1	1	1					1	1			1	4	1			3	1			17
	Is											1										1		1	5
	1 s																3	1					3		7
	lz											1													1
	1 z					1											1				2				4
	lk			1		3	2		2	1	1	3					4	2			4	4	2		33
	1 k	1				2				1		1				1	1	3		4	4	2	3	2	28

	lg					1					1									1					5
	lg					2									3	1				1			2	2	13
	If		1	1		2					2	3	2	1	4	2				3	1			1	25
	1 f	3		1	3	4				2	1	2		3	3	4			1	4	3		3	4	43
	lv			2		1						2			1	1								1	10
	1 v	3			1					1					3	2			1	3				1	18
	1sh			2	1							1	2	1	2	1				2	2				14
	1 sh					1					1			2	2	2				1			1		10
	lj		1																		2			1	4
	l j															1								2	3
	Total	22	12	12	15	40		15	7	15	10	43	28	33	44	55	4		13	56	37	2		38	571
3	final L		1		1																				5
	lp		2		1	1										1					1				7
	1p	1	3		2			3		1					2								1		13
	lb		2					1																	5
	1 b		2		1			3							1	1					2		2		13
	lm															1				1					2
	1 m		2		1			1																	4
	1 t		2					1							1						1				5
	1 d				2			1																	3
	In															2									2
	1 n					1		1													1				4
	Is				2			2																	5
	1 s							2													1				3
	lz		1					1																	2
	1 z		1					1																	2
	lk		1		2			2											1						8
	1 k		1		1			4				2			3	2					2		1	1	17
	lg					2						1									1				5
	lg		1		2			4								1					3				11
	If		1					1													1				5
	1 f	1						3							1								1		7
	lv		2					1																	5
	1 v	1	1		2			2							1	2					2		1		13
	1sh		2			1			1							2					1				11
	1 sh		1		2			4													4		1		12
	lj		3					2	1											1					7
	1 j	1	2	1				1				1								2	1		1	1	11
Total		4	31	1	19	5	4	41	2	1		4			9	12	2		1	4	21		8	2	187
																									2134

APPENDIX J

SPECTROGRAMS AND SPECTRA OF REALIZATIONS OF /I/ AS ‘L’AND ‘W’

Spectrogram and sound wave of production of /I/ of the word 'bell' as 'L' by a female participant

1. The most salient gesture is consonantal;
2. Duration: 33 ms
3. Syllable peak

Formants	Ratios
F1-760	F3/F1: 3.52
F2-1809	F2/F1: 2.38
F3-2676	

4. $/ \mathrm{I} /$ as $^{\text {' }} \mathrm{L}$ '

Formants	Ratios
F1-757	F3/F1: 3.75
F2-1188	F2/F1: 1.56
F3-2844	

Spectrogram and sound wave of production of /I/ of the word 'tell' as 'W' by a female participant

1. The most salient gesture is consonantal;
2. Duration: 18 ms
3. Syllable peak

Formants	Ratios
F1-738	F3/F1: 3.74
F2-1670	F2/F1: 2.26

4. $/ \mathrm{l} / \mathrm{as}$ ' W '
5. $/ \mathrm{l} /$ as ' $^{\prime} \mathrm{W}$ '

Formants	Ratios
F1-629	F3/F1: 4.35
F2-1103	F2/F1: 1.75
F3-2739	

ANALYSIS

1. Duration is a good predictor of $/ \mathrm{I} /$ realizations; the longer the duration is the lower the degree of vocalization will be. That is, the more vocalized the $/ \mathrm{I} /$, the shorter the duration of the segment;
2. The results of the present study showed that the ratios F3/F1 and F2/F1 of the syllable peak would be higher the more vocalized the /I/ was. The examples above confirm this fact in relation to ratio F3/F1, at least;
3. Concerning the realizations of $/ I /$ as ' L ' and as ' W ', the spectrograms show that the formant frequencies behaviour are too similar that makes it hard to state which realization is made by analyzing the formant frequencies only, although there is a tendency for the ratios being higher the more vocalized the /I/ realization is.

Spectrum a stretch of sound from the production of /I/ as 'L' by a female participant

Spectrum a stretch of sound from the production of /I/ as 'W' by a female participant

ANALYSIS

1. The presence of consonantal gesture causes pole-zero clusters (great downward tilts of frequencies) at high frequencies;
2. The presence of pole-zero clusters also weaken the frequencies, resulting in a fairly flat spectrum between 1600 and 3400 Hz ;
3. When there is less obstruction in the vocal tract, like during the production of vowels or the vocalized /I/, the harmonics are better defined.

APPENDIX K

ACOUSTIC PROPERTIES OF DIFFERENT REALIZATIONS OF /I/

LEGEND

Context

1,9 and 23 /l/	2. /lp/	3. $/ 1 \mathrm{p} /$	4. $/ \mathrm{lb}$	5. $/ \mathrm{ll}$ b/
6. $/ \mathrm{lm} /$	7. $/ 1 \mathrm{~m} /$	8. /lt/	9. $/ 1 \mathrm{t} /$	10. /ld/
11. $/ 1 \mathrm{~d} /$	12. $/ \mathrm{ln} /$	13. /ln/	14. /ls/	15. $/ 1 \mathrm{~s} /$
16. /lz/	17. /l z/	18. /lk/	19. $/ 1 \mathrm{k} /$	20. $/ \mathrm{lg} /$
21. $/ \mathrm{lg} /$	24. /lf/	25. /l f/	26. /lv/	27. $/ \mathrm{lv} /$
28. /IS/	29. /1 S/	30. /l3/	31. /13/	

Context +		Peak						Context + /1/ prod.	Duration	Peak			/1/		
		F1	F2	F3	F1	F2	F1			F1	F1	F3	F1	F2	F3
1 1_Lwo	0,3265	515	2323	3013	566	1184	2733	11 1_Wo	0,2365	512	1614	2372	531	1037	2287
1 1_Lwo	0,287	608	2276	2989	552	1344	2738	11 1_Wo	0,2421	541	1493	2187	519	1024	2229
12 _Wo	0,2336	713	2174	2909	568	1181	2704	112 _Wo	0,1755	590	1511	2476	572	1034	2297
12 _Wo	0,2221	635	1932	2886	583	1164	2588	112 _Wo	0,1826	607	1438	2308	487	970	2270
13 _Wo	0,1829	617	2138	3065	499	1090	2694	113 _Wo	0,1612	510	1525	2302	480	877	2278
13 -W	0,1235	642	1934	2869	471	1111	2384	113 _Wo	0,2277	505	1620	2416	515	985	2216
1 4_Lwo	0,2498	634	1668	2759	614	1186	2783	11 4_Wo	0,215	535	1416	2198	514	1037	2216
1 4_Wo	0,2317	660	2037	2765	558	1123	2588	11 4_Wo	0,1915	521	1426	2201	477	985	2185
15 _Wo	0,1725	667	2047	2999	529	1046	2853	11 5_Wo	0,1814	437	1643	2557	499	952	2278
15 _Wo	0,1288	647	1984	2915	573	1025	2715	11 5_Wo	0,2564	522	1649	2510	479	917	2288
1 6_WN	0,2148	829	2278	3069	706	1237	2625	11 6_Lwo	0,2457	591	1359	2237	484	1017	2309
1 6_Lw	0,2061	577	1613	2690	500	1026	2553	11 6_M	0,2173	556	1505	2363	485	1003	2300
17 _Lwo	0,23	637	2295	2957	523	1075	2623	11 7_Wo	0,1847	491	1606	2460	497	1007	2193
1 7_Wo	0,1065	650	1861	2966	576	1099	2836	11 7_Wo	0,226	491	1672	2187	543	1107	2239
1 8_Lwo	0,2886	557	1893	3009	596	1333	2752	11 8_Lwo	0,2529	554	1502	2319	488	1037	2312
18 _Lwo	0,2936	679	2494	3274	515	1239	2601	11 8_Lwo	0,2297	541	1587	2300	483	1088	2320
19 -Lwo	0,3442	644	2173	2986	532	1067	2661	11 9_Wo	0,2645	482	1477	2404	534	1060	2230
19 _Lw	0,2253	664	2083	2841	555	1133	2335	11 9_Wo	0,23	467	1449	2359	527	1096	2229
1 10_Lw	0,2098	678	2056	2732	466	1161	2649	11 10_Lwo	0,2385	462	1736	2612	476	1074	2356
1 10_Lw	0,152	654	1914	2886	553	1279	2600	11 10_NL	0,249	491	1727	2321	568	1181	2267
111 Lwo	0,2618	659	2268	2840	547	1291	2778	11 11_Lwo	0,2194	580	1532	2349	483	1073	2369
111 -Lwo	0,2514	613	1165	2375	513	1350	2530	11 11_Lw	0,2541	599	1507	2351	433	1065	2445
1 12_Lwo	0,293	663	2123	2878	468	1244	2928	11 12_Lw	0,1838	511	1466	2308	448	1024	2391
1 12_Lwo	0,1835	572	1988	2875	521	1404	3062	11 12_Lw	0,3254	493	1686	2373	473	1056	2234
1 13_Lwo	0,2202	658	2416	3187	617	1100	2689	11 13_Lwo	0,2317	581	1490	2279	488	1048	2288
1 13_Lw	0,2269	624	2234	3115	512	1145	2636	11 13_WN	0,2063	565	1589	2349	505	1039	2304
1 14_Lw	0,2954	573	2036	2992	475	1140	2876	11 14_Lwo	0,2084	474	1600	2526	491	1007	2356
1 14_Lwo	0,1579	644	1985	2997	614	1454	2763	11 14_Wo	0,2189	482	1649	2434	518	1066	2251
1 15_Lwo	0,257	657	2136	2918	539	1319	2645	11 15_Lwo	0,2377	590	1560	2318	534	1119	2401
1 15_Lw	0,2736	629	2113	2988	456	1342	2695	11 15_Lwo	0,2354	595	1507	2285	513	1045	2415
1 16_Lwo	0,1749	659	2078	2851	527	1433	2941	11 16_Lwo	0,1855	501	1513	2359	505	1061	2299
1 16_Lwo	0,1307	656	1964	2734	592	1397	2933	11 16_Lwo	0,2431	496	1598	2456	489	1035	2249
1 17_Lwo	0,2584	689	2341	3145	570	1190	2689	11 17_Lwo	0,2408	556	1520	2400	515	1014	2267
1 17_Lw	0,254	735	2225	3012	544	1191	2737	11 17_Lwo	0,2408	531	1621	2368	468	996	2179
1 18_Lw	0,2628	616	2232	3120	471	1280	3105	11 18_Lwo	0,1937	534	1465	2304	469	1032	2346
1 18_Lw	0,1799	639	1959	2856	501	1349	2946	11 18_NL	0,3134	499	1692	2327	520	1053	2265
1 19_Lwo	0,2589	632	2215	3012	553	1141	2574	11 19_Lwo	0,2697	508	1488	2266	525	1043	2301
1 19_Lw	0,2689	619	2092	2921	514	1175	2668	11 19_Lwo	0,2447	514	1481	2231	500	1006	2221
120 _Lw	0,1811	653	2080	2856	517	1133	2628	11 20_Lwo	0,1918	452	1681	2481	491	1037	2231
120 _Lw	0,1275	643	2005	2811	488	1104	2473	11 20_NL	0,2797	458	1770	2472	506	1059	2168
121 _Lw	0,262	686	2263	3069	525	1219	2751	11 21_Lwo	0,2728	497	1710	2373	508	1037	2196
121 _Lw	0,2636	617	2467	3101	490	1119	2648	11 21_Lwo	0,2589	484	1708	2360	480	1041	2207
1 22_Lw	0,2013	575	2186	2935	526	1379	2749	11 22_Lwo	0,2302	494	1593	2405	480	1036	2344
122 _Lw	0,1421	638	1918	2847	484	1316	2817	11 22_Lwo	0,2482	484	1709	2471	554	1066	2185
123 _Lwo	0,3038	642	2124	2843	531	954	2458	11 23_Wo	0,2102	490	1640	2411	608	1105	2119
1 23_Lw	0,2426	613	2087	2713	499	1162	2600	11 23_Wo	0,1626	492	1546	2320	625	1132	2183
124 _Lwo	0,2284	654	2078	2868	521	1059	2486	11 24_Wo	0,1946	524	1447	2403	600	1010	2241
124 _Lwo	0,2378	654	2100	2818	508	1092	2552	11 24_Lwo	0,1631	507	1381	2423	608	1099	2192
125 -W	0,1661	618	2111	3009	459	995	2747	11 25_Lwo	0,219	509	1524	2415	496	985	2361

125 -Wo	0,1249	638	205	291	51	1032	2345	11
126 _Lwo	0,2347	661	2083	2879	547	1102	2779	11 26_Lwo
126 _Lwo	0,2417	622	2084	2930	499	1097	2608	11 26_Lwo
127 _W	0,2038	626	2028	2968	456	1002	2815	11 27_Lwo
127 -Wo	0,1643	640	1774	2900	425	944	2898	11 27_NL
1 28_Lwo	0,2881	645	2188	3040	506	1251	2858	11 28_Lwo
128 _Lw	0,2673	617	2126	2987	507	1191	2674	11 28_L
1 29_Lw	0,1827	642	2043	2886	490	1353	2772	11 29_Lwo
1 29_Lwo	0,1429	648	2017	2826	582	1459	2817	11 29_NL
$130 _$Lwo	0,2936	660	2047	2778	530	1544	2625	11 30_M
$130 _$Lw	0,3	642	2126	2878	499	1539	270	11 30_M
131 _Lw	0,1702	653	1961	2842	489	1661	279	11 31_M
131 _Lwo	0,18	642	1984	2872	532	1696	2781	11 31_NL
12 _Lwo	0,2338	711	2142	2848	555	1179	2643	112 _Lwo
12 _Lwo	0,2026	665	2020	2752	558	1115	2452	11 2_Lwo
11 _Lwo	0,3097	635	2271	2914	536	1080	2682	11 1_L
11 _Lwo	0,2625	622	2163	2979	542	1158	2633	11 1_Lw
$130 _$Lwo	0,2701	652	2198	2964	507	1488	2653	11 30_M
130 _Lwo	0,2782	668	2127	2825	512	1456	2727	11 30_M
125 _Wo	0,1873	662	2175	2959	506	1026	259	11 25_Lwo
125 -Wo	0,143	646	2120	2905	496	1041	2665	11 25_Lwo
1 28_Lwo	0,2255	647	2130	2932	576	1260	2718	1128 _Wo
128 Lw	0,2732	645	2092	2901	489	1250	2668	11 28_Wo
17 _Lwo	0,1697	691	2053	2710	584	1192	2581	117 T Wo
17 _Wo	0,1341	653	2020	2989	521	1085	2763	11 7_Lwo
126 _Lw	,2508	698	2043	2900	505	1139	2764	11 26_Lwo
$126 . L w o$	0,2537	670	2051	3002	516	1096	2739	11 26_Lwo
131 -W	0,1603	615	1893	2886	461	1728	2909	11 31_Lwo
1311 Lw	0,1656	638	1874	2924	479	1556	2891	11 31_NL
1 24_Lwo	0,2302	688	2086	2896	533	1085	2659	11 24_Wo
124 _Lwo	0,2442	670	2059	2841	560	1122	2532	11 24_Lwo
122 LLwo	0,2088	624	2089	2838	504	1286	2747	11 22_Lwo
122 Lwo	0,1631	642	1929	2821	534	1477	298	11 22_NL
123 _Lwo	0,2763	659	2100	2884	525	1024	256	11 23_Lwo
123 _Lw	,2796	628	1978	2555	491	1182	250	11 23_Lwo
$127 \ldots$ Wo	0,1362	632	2000	2955	478	1297	2719	11 27_Lwo
127 _Wo	0,1138	649	1837	2788	541	1149	2851	11 27_NL
14 _Lwo	0,2188	676	1860	2784	539	1219	2658	11 4_Wo
1 4_Lwo	0,2243	663	1862	2888	494	1079	2679	11 4_Lwo
1 10_Lw	0,1935	677	1906	2868	511	1315	2890	11 10_Lwo
1 10_Lwo	0,1512	634	1741	2792	567	1440	2732	11 10_Lwo
111 Lwo	0,2509	702	2095	2933	568	1365	256	11 11_Lwo
111 Lwo	,2329	660	2000	2782	505	1189	2442	11 11_Lwo
1 14_Lw	0,1807	677	2018	2927	471	1253	2111	11 14_Lwo
114 -Wo	0,139	638	1780	2888	555	1308	2872	11 14_NL
1 17_Lwo	0,2612	719	2211	3100	514	1274	2711	11 17_M
117 _Lwo	0,2593	784	2194	3066	512	1318	2744	1117 M
$129 . L w o$	0,1536	679	1854	2839	488	1462	2872	11 29_Lwo
$129 . L w o$	0,1326	649	1929	2829	524	1430	2918	11 29_Lwo
1 15_Lwo	0,2379	659	2080	2804	508	1135	2793	11 15_Lwo
1 15_Lwo	0,2405	644	2049	2847	515	1271	2641	11 15_L
13 _Wo	0,1401	652	1975	2924	557	1208	2764	11 3_Wo
13 _Wo	0,1172	653	1899	2804	564	1070	2836	1138 Wo
113 _LwN	0,2467	729	2028	2949	614	1191	2716	11 13_Wo
113 _WN	0,2394	844	2097	2883	676	1820	2920	11 13_Wo
1 16_Lwo	0,1786	656	2166	2876	552	1366	2913	11 16_Lwo
1 16_Lwo	0,1382	653	1797	2869	579	1338	2893	11 16_Lwo
19 -Lwo	0,2801	640	2087	2906	540	1199	2607	11 9_Wo
1 9_Lwo	0,2657	642	2089	2788	533	1123	2609	11 9_Lwo
1 18_Lw	0,1958	642	1922	2779	481	1369	2786	11 18_Lw
1 18_Lwo	0,1635	615	2041	2890	523	1373	2849	11 18_NL
1 19_Lwo	0,241	628	2292	2914	564	1276	2497	11 19_Lwo
1 19_Lwo	0,2369	613	2103	2940	513	1054	2734	11 19-Lwo
1 12_Lw	0,2213	671	2014	2815	468	1178	2729	11 12_L
1 12_Lwo	0,1459	653	2003	2647	560	1507	2645	11 12_NL
16 Wo	0,1964	657	2371	3050	623	1255	2474	11 6_Lwo
1 6_Wo	0,1913	595	1808	2671	593	1165	2464	11 6_M
15 -Wo	0,1474	657	2099	2917	549	1128	258	11 5_Lwo
15 -Wo	0,139	659	1898	2733	525	1049	2584	11 5_Lwo
121 Lwo	0,2561	687	2360	3180	527	1289	2632	11 21_Lwo
121 Lwo	0,2614	719	2364	3121	530	1073	2535	11 21_Lwo
$120 _$Lw	0,176	679	2029	2722	485	1165	2549	11 20_Lwo
120 -Wo	0,1293	656	1854	2718	536	1067	2672	11 20_Lwo
18 _Lw	0,2816	673	2292	3162	541	1367	2704	11 8_Lwo
18 _Lw	0,2506	785	2270	2983	501	1036	2532	11 8_Lwo
1_Lwo	0,2668	628	2038	2897	66	1250	277	1_L

	500	146		46		
	508	16	235	45		
,218	581	14	2146	52	1072	
,2393	538	12	215	50	102	
74	557	149	231	48	08	
	540	1542	227	55		
	515	1510	247	45		
,239	547	15	2173	519	03	239
2407	622	14	22	546	112	
,233	603	14	226	46	1058	
,278	507	15	23	53	105	
	509	162	240	48	03	
		1292	218			
,219	512	16	241	516	102	
,210	558	131	21	529	115	
,230	553	13	221	49	1117	
210	503	15	244	53		
16	509	1613	23	51		有
		150				
		1519				
	499	164	23	56	119	
	513	145	24	56		
,242	538	144	226	52	101	
2058	469	161				
	525	163	225	51	022	
	493	158	238			,
		158				
	528	1635	239	49		
0,21	57.	14	22	55		
	515	145	22			
	497					
	533	157				
	6	150	227			
		156				
	530	164	226	516	030	
2	571	154	228	50	04	
	594	152	22	48	1026	
	54	149	226			
	52	156		52		
		163				
	545	1461				
	535	570	237	54		
	56	164	24	487		
	602	151	2	49	,	
,	530	154	237	51	111	
	514	163	240	48	1115	
				451		
	503	68				
	490	16	23	54	1060	
	512	151	21	520		2218
	525	152	249	52	105	
	53	158	238	498		
	624					
	578					
	479			510		
	540	1529				
	514	16	2314	50	1000	164
468	568	1604	238	477	1005	2174
1618	568	1414	2451	510	1004	
0,2928	538	164	2314	488	964	
	570	1568	232	508	1047	
	573	1661	2412	490	,	
239	536	1730	24			

21 －Wo
2 2＿W
2 2＿Lw
2 3＿Wo
23 －W
2 4＿Wo
2 4＿W
2 5＿Wo
2 5＿W
2 6＿WN
2 6＿WN
27 －Wo
27 －W
28 －Lw
2 8＿Lw
29 －Wo
29 9 ${ }^{\text {a }}$
2 10＿NL
2 10＿W
2 11＿Wo
2 11＿Lw
2 12＿Lw
2 12＿Lw
2 13＿LwN
2 13＿LwN
2 14＿NL
2 14＿WN
2 15＿Lw
2 15＿Lwo
2 16＿Lw
2 16＿Lw
2 17＿Lw
2 17＿M
2 18＿Lw
2 18＿Lw
2 19＿Lw
2 19＿W
2 20＿NL
2 20＿Lw
2 21＿Lwo
2 21＿Lw
2 22＿Lw
2 22＿W
2 23＿Lwo
2 23＿M
2 24＿Wo
2 24＿W
2 25＿Lw
2 25＿Lw
2 26＿Lw
2 26＿W
2 27＿Lw
2 27＿Lw
2 28＿Lw
228 ＿W
2 29＿M
2 29＿M
230 －W
230 －W
2 31＿M
231 －W
2 2＿Wo
2 2＿W
2 1＿Lwo
2 1＿L
230 －Wo
230 －W
2 25＿Lw
2 25＿M
2 28＿Lw
228 －W
27 －Lw
27 －W
2 26＿Lw
2 26＿W
$231 _$Lw

| 0,1485 | 609 | 1767 | 2844 | 697 | 1437 | 2880 | 12 | 1＿Lwo |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0,1922 | 774 | 2148 | 2791 | 566 | 1256 | 2634 | 12 | 2 ＿LWo |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0,1905 | 759 | 1959 | 2892 | 435 | 1173 | 2700 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | ＿Wo | | | | | | $\left.\begin{array}{lllllllll}0,1344 & 720 & 2003 & 2913 & 601 & 1268 & 2727 & 12 & 3\end{array}\right) W o$ | 0,1427 | 672 | 2003 | 2972 | 449 | 1109 | 2537 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3＿Lwo | | | | | | | | | 0,1877 | 676 | 1966 | 2774 | 654 | 1377 | 2627 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 4＿Lwo $^{\prime}$ | 0,1804 | 768 | 1809 | 2907 | 426 | 1123 | 2270 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4＿Lwo | | | | | | | | | 0,1758 | 678 | 2090 | 3017 | 563 | 1255 | 2589 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | | | | | | | | | 0,1153 | 647 | 1998 | 2850 | 408 | 1078 | 2618 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 5＿Lwo | | | | | | | | 0,1961 | 816 | 1926 | 2787 | 421 | 1045 | 2124 | 12 | 6 ＿WN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}0,166 & 867 & 2150 & 2571 & 390 & 1073 & 2281 & 12 & 6 _ \text {LwN }\end{array}$ $\begin{array}{lllllllll}0,1724 & 698 & 2124 & 2961 & 617 & 1168 & 2429 & 12 & 7 _ \text {＿Lwo }\end{array}$ | 0,2306 | 678 | 1837 | 2812 | 330 | 969 | 2538 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7＿Lwo | | | | | | | | $\begin{array}{lllllllll}0,2399 & 646 & 2220 & 2936 & 528 & 1317 & 2997 & 128 \text { 8＿L }\end{array}$

| 0,2466 | 682 | 2120 | 3012 | 331 | 1288 | 2907 | 12 | 8＿Lwo |
:---	:---	:---	:---	:---	:---	:---	:---	:---		0,2522	748	2067	2964	525	1128	2499	12		
9									0,0612	582	1958	2816	725	1804	2794	12			
:---	:---	:---	:---	:---	:---	:---	:---												
9								$\begin{array}{lllllllll}0,2675 & 681 & 2034 & 2810 & 433 & 1006 & 2725 & 12 & 10 \\ \text {＿Lwo }\end{array}$ $\begin{array}{lllllllll}0,1243 & 639 & 1555 & 2767 & 388 & 1059 & 2841 & 12 & 10 _ \text {Lwo }\end{array}$	0,2035	696	2052	2737	600	1458	2700	12			
:---	:---	:---	:---	:---	:---	:---	:---												
11＿Lwo								$\begin{array}{lllllllll}0,2122 & 779 & 2066 & 2808 & 387 & 1072 & 2386 & 12 & 11 \text {＿Lwo }\end{array}$ $\begin{array}{lllllllll}0,1909 & 693 & 1954 & 2868 & 520 & 1330 & 2805 & 12 & 12 _ \text {Lwo }\end{array}$	0,1525	656	1873	2799	510	1330	2782	12	12＿Lwo		
:---	:---	:---	:---	:---	:---	:---	:---	:---											
0,1976	879	2016	2926	697	1346	2721	12	13＿LwoN	$\begin{array}{lllllllll}0,1952 & 802 & 1892 & 2935 & 299 & 1084 & 2397 & 12 & 13\end{array}$	0,3321	719	2056	3022	430	1005	2560	12		
:---	:---	:---	:---	:---	:---	:---	:---	$14 _$NL $\begin{array}{lllllllll}0,1455 & 696 & 1563 & 2770 & 321 & 1025 & 2367 & 12 & 14 _ \text {Lwo }\end{array}$ $\begin{array}{lllllllll}0,2996 & 777 & 2192 & 2893 & 520 & 1196 & 2800 & \text { 12 15＿Lwo }\end{array}$ $\begin{array}{lllllllll}0,2555 & 512 & 2198 & 3017 & 509 & 1157 & 2418 & 12 & \text { 15＿Lwo }\end{array}$	0,1941	668	2055	2835	414	1201	2747	12			
:---	:---	:---	:---	:---	:---	:---	:---												
16＿Lwo									0,1551	733	1652	2783	369	1155	2779	12			
:---	:---	:---	:---	:---	:---	:---	:---												
16＿Lwo								$\begin{array}{lllllllll}0,2442 & 600 & 2232 & 3116 & 631 & 1195 & 3026 & 12 & 17 _M\end{array}$	0,2468	735	1909	2914	310	1096	2697	12			
:---	:---	:---	:---	:---	:---	:---	:---												
17	17	M						$\begin{array}{lllllllll}0,2693 & 612 & 2415 & 3119 & 510 & 1478 & 3094 & 12 & 18 \text {＿Lwo }\end{array}$ $\begin{array}{lllllllll}0,1668 & 723 & 1800 & 2855 & 509 & 1601 & 2995 & 12 & 18 _ \text {Lwo }\end{array}$	0,2194	592	2081	2861	598	1400	2775	12	19 ＿Wo		
:---	:---	:---	:---	:---	:---	:---	:---	:---	$0,2049 \quad 630 \quad 1923 \quad 2834 \quad 448$ $\begin{array}{lllllllll}0,2627 & 677 & 2050 & 2962 & 509 & 1169 & 2793 & \text { 12 20＿Lwo }\end{array}$	0,1389	658	1989	2861	350	1124	2814	12		
:---	:---	:---	:---	:---	:---	:---	:---												
20	20＿Wo							$\begin{array}{lllllllll}0,2308 & 618 & 2103 & 2996 & 644 & 1570 & 2876 & 12 & 21 _ \text {Lwo }\end{array}$	0,2173	669	2062	2981	471	1360	2739	12			
:---	:---	:---	:---	:---	:---	:---	:---												
21	2Lwo								0,207	659	2107	2882	436	1450	2869	12			
:---	:---	:---	:---	:---	:---	:---	:---	22 ＿Lw $\begin{array}{lllllllll}0,1296 & 673 & 1966 & 2836 & 303 & 1070 & 2521 & 12 & 22 \text {＿Lwo }\end{array}$ $\begin{array}{lllllllll}0,2312 & 675 & 2136 & 2870 & 694 & 1242 & 2723 & 12 & 23 \text {＿Wo }\end{array}$ $0,2209 \quad 666 \quad 21742857 \quad 300$	0,1683	710	1931	2760	650	1242	2592	12			
:---	:---	:---	:---	:---	:---	:---	:---												
24	－Wo							$\begin{array}{lllllllll}0,1896 & 689 & 1770 & 2804 & 340 & 1116 & 2321 & 12 & 24 _ \text {Lwo }\end{array}$ $\begin{array}{lllllllll}0,18 & 673 & 2135 & 2880 & 530 & 1101 & 2637 & 12 & 25\end{array}$	0,1412	732	2051	2918	359	1108	2521	12	25		
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lllllllll}0,2139 & 702 & 1902 & 2838 & 481 & 1245 & 2384 & 12 & \text { 26＿Lwo }\end{array}$ $\begin{array}{lllllllll}0,1927 & 553 & 1634 & 2732 & 313 & 1062 & 2431 & \text { 12 26＿Lwo }\end{array}$	0,1835	621	2155	2924	512	1159	2769	12		
:---	:---	:---	:---	:---	:---	:---	:---												
27＿Lwo									0,1501	690	1663	2782	330	1380	2719	12			
:---	:---	:---	:---	:---	:---	:---	:---												
27＿Lwo								$\begin{array}{rllllllll}0,23 & 743 & 1775 & 2778 & 447 & 1437 & 2759 & 12 & 28 \text {＿Lwo }\end{array}$ $\begin{array}{lllllllll}0,2445 & 434 & 1229 & 2220 & 353 & 1130 & 2120 & 12 & 28 \text {＿Lwo }\end{array}$ $\begin{array}{lllllllll}0,1895 & 653 & 2069 & 2932 & 502 & 1384 & 2928 & 12 & \text { 29＿Lwo }\end{array}$ $\begin{array}{lllllllll}0,1477 & 701 & 1773 & 2823 & 330 & 1271 & 2819 & 12 & 29 \text {＿－Wo }\end{array}$	0,2114	764	1849	2936	449	1720	2674	12	$30 _M$		
:---	:---	:---	:---	:---	:---	:---	:---	:---		0,1865	708	1713	2730	380	1572	2324	12	$30 _M$	
:---	:---	:---	:---	:---	:---	:---	:---	:---		0,1753	611	1861	2727	394	1303	2438	12	$31 _M$	
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0,1327	588	1748	2711	337	1767	2715	12	$31 _M$
:---	:---	:---	:---	:---	:---	:---	:---	:---		0,1799	686	2083	2817	510	1342	2647	12	2	
:---	:---	:---	:---	:---	:---	:---	:---	:---											
2＿Wo									$\begin{array}{lllllllll}0,2089 & 734 & 2001 & 2872 & 436 & 1200 & 2617 & 12 & 2\end{array}$	0,1646	582	2033	2868	661	1323	2827	12	$1 _W o$	
:---	:---	:---	:---	:---	:---	:---	:---	:---		0,2484	605	1839	2801	358	1249	2756	12	1 ＿Wo	
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{llllllllll}0,1832 & 668 & 1869 & 2823 & 514 & 1721 & 2879 & 12 & 30 _M\end{array}$	0,227	576	1726	2786	355	1761	2804	12	$30 _$－M
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0,1364	668	2002	2830	444	1102	2721	12	
:---	:---	:---	:---	:---	:---	:---	:---												
25	25＿Wo								0,1951	686	1947	2914	352	1931	2933	12	$25 _W o$		
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{llllllll}0,2812 & 726 & 1720 & 2779 & 421 & 1457 & 2702 & 12 \\ 2828 & \text {－Lwo }\end{array}$ $\begin{array}{lllllllll}0,2217 & 506 & 1541 & 2475 & 331 & 1309 & 2135 & 12 & 28 _W o\end{array}$	0,1694	689	2042	2770	516	1202	2705	12 7＿Lwo		
:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lllllllll}0,1111 & 671 & 1930 & 2819 & 369 & 1066 & 2417 & 12 & 7 \\ \text { 7 Lwo }\end{array}$	0,225	631	1948	2784	440	1424	2509	12			
:---	:---	:---	:---	:---	:---	:---	:---												
26＿Lwo									0,1867	555	1525	2689	366	1189	2483	12			
:---	:---	:---	:---	:---	:---	:---	:---												
26＿Lwo																			

	476	1760	2445			2402
	762	1795	2657			
0，1872	536	1736	220			
2217	555	1735	239			
0，2294	597	1681	2322			
， 225	620	1722	23			
	538	1667				400
， 2183	536	1809	2220	543		2446
	732	1797	250	747	1008	
0，2411	776	1710	2447	583		2272
0，1852	517	1788	2329	615		
	582	1739	224			
0，2289	671	1796	250			
0，2465	528	1833	26	65	1008	2240
		1801			106	
0，2439	537	1836	2375	15		2562
0，2277	602	1633	258			
	763	1878	257			
0，2518	735	18	25	580	1006	2374
		178	25			
0，2669	583	17	2298	51	036	2423
	692	1842	258		仿	
0，2104	768	1969	2767	766	107	
	532	1786	23	563		
		1845	402			
		192	2567			
	639				1020	
	539	1793				
	532	185	2417			
	689	17	264	656		
	682	18	267	657	108	
0，2571			258			
0，24	583	1903				
	621	173	25	680	，	
	614	1812				
	539	1809	232	53	105	
		1757	227			
	666	1809	261	56		
	669	190	265	，		
	67	17				
	484	1848	232			2405
	49	1886				
	49	1921	2433		1046	
	564	1838	2400	2		
	560	1795	2625	65	，	
	532	1766	228			
	54	17	2105			
	61	1803	241			
	558	1799				
		1612				
	557	1675		509		
	628	析	234		110	
	499					2461
	535	迷	2200			
	59					226
	598	1802	2448			
	547	1632	2422	45	11	
	503	1867	2477	482	115	2254
，	670	1629	212			0
1674	75	124	2468		1012	402
	583	1612	224	683	107	2266
，	554	1645	2339	692	116	2601
	51	1776	2639	530	1296	2093
	551	，	2616	5	1359	225
	522	1663	450	582	1020	
1483	526	1648	2101	57		234
1779	555	1175	2227	618	105	2202
1765	528	1259	2254	57	1090	2230
1413	534	1586	1973	57		2355
，1499	567	1619	2171	590	942	253
，2144	570	1648	2107	542	，	22
	564	1755	2520	556	974	2316
245	553	69	2043		1227	

2 31_W	0,1607	648	1843	2705	357	1784	2750	12 31_M
2 24_M	0,2636	718	1807	2679	353	1519	2572	12 24_Lwo
2 24_M	0,2137	563	1726	2732	327	1154	2383	12 24_Lwo
2 22_Lw	0,1487	621	2089	2753	383	1397	2552	12 22_Lwo
2 22_Lw	0,1165	682	1897	2782	407	1579	2524	12 22_Lw
2 23_M	0,3369	679	1850	2712	400	1017	2470	12 23_Lwo
2 23_M	0,2079	667	1787	2880	371	1276	2589	12 23_Lwo
2 27_Lw	0,1545	627	1675	2572	414	1277	2589	12 27_Lwo
2 27_W	0,1722	697	1736	2646	320	1376	2720	12 27_Lw
2 4_M	0,1866	651	1983	2766	699	1654	2615	12 4_Lwo
2 4_W	0,1667	693	1941	2853	404	1212	2816	12 4_Lwo
2 10_M	0,1879	587	1794	2783	428	1324	2729	12 10_Lwo
2 10_W	0,1456	641	1472	2750	317	1123	2809	12 10_Lwo
2 11_Lw	0,234	557	1410	2665	391	1465	2778	12 11_Lwo
2 11_Lw	0,1677	737	1743	3009	351	1174	2418	12 11_Lwo
2 14_WN	0,1645	511	1898	2752	479	1155	2439	12 14_Wo
2 14_WN	0,1506	778	1688	2858	309	1110	2258	12 14_WoN
2 17_Lw	0,1805	704	2123	3173	456	1247	3023	12 17_M
2 17_W	0,1807	727	1801	2940	314	1055	2955	12 17_M
2 29_Lw	0,1464	668	1783	2667	414	1630	2377	12 29_Lwo
2 29_W	0,1079	608	1610	2730	335	1834	2672	12 29_Wo
2 15_M	0,2941	522	1619	2198	443	1238	2817	12 15_Wo
2 15_M	0,2251	381	1263	2340	388	1111	2560	12 15_Wo
2 3_W	0,1167	622	1680	2685	448	1115	2556	12 3_Wo
2 3_W	0,0917	618	1634	2549	373	1181	2516	12 3_Wo
213 _LwN	0,2383	758	2027	2838	328	1078	2385	12 13_WoN
2 13_WN	0,1819	761	1921	2888	296	1096	2374	12 13_WoN
2 16_Lw	0,1631	720	1828	2824	450	1370	2890	12 16_Lwo
2 16_Lw	0,1376	664	1766	2887	371	1399	2787	12 16_Lwo
29 -Wo	0,236	642	1906	2741	595	1219	2615	12 9_Wo
29 WW	0,1764	628	1538	2753	352	1125	2638	12 9_Wo
2 18_Lw	0,1967	640	2077	2882	500	1430	2747	12 18_Lwo
2 18_W	0,1673	670	1804	2721	437	1577	2907	12 18_Lwo
2 19_Lw	0,2196	576	1927	2767	491	1372	2780	12 19_Wo
2 19_Lw	0,1673	636	1893	2721	285	1208	2644	12 19-Wo
2 12_Lw	0,107	697	2018	2690	619	1357	2886	12 12_Lwo
2 12_Lw	0,1377	684	1595	2948	291	1622	2942	12 12_Lwo
2 6_WN	0,229	849	1906	2663	472	1067	2511	12 6_WN
2 6_LwN	0,2143	779	1885	2945	360	1172	2459	12 6_WN
2 5_Wo	0,12	619	2028	2769	428	1063	2478	12 5_Wo
2 5_W	0,1304	684	1504	2679	368	888	2641	12 5_Wo
2 21_Lw	0,2039	598	2075	2842	443	1330	2411	12 21_Lwo
2 21_Lw	0,2103	670	1907	2895	640	1601	2699	12 21_Lwo
2 20_NL	0,1721	697	1974	2775	456	1146	2798	12 20_Wo
2 20_W	0,1599	705	1844	2722	334	1113	2665	12 20_Wo
2 8_Lwo	0,1881	621	1976	2780	653	1622	2918	12 8_Lwo
28 _Lw	0,1597	741	1753	2896	294	1248	2742	12 8_Lwo
3 1_L	0,2876	703	1903	2293	764	1244	2586	13 1_Wo
3 1_Lwo	0,2557	747	1870	2808	800	1328	2559	13 1_Lwo
3 2_Lwo	0,2332	802	1907	2449	652	1080	2665	13 2_Wo
32 _Lwo	0,1957	827	1422	2336	658	1080	2623	13 2_Wo
3 3_Lwo	0,2689	703	1771	2495	591	1034	2941	13 3_W
3 3_Lwo	0,2653	680	1846	2642	572	1045	2751	13 3_Wo
3 4_Lw	0,2458	726	1734	2799	682	1181	2732	13 4_Wo
3 4_Lwo	0,2713	753	1751	2357	642	1179	2712	13 4_M
3 5_NL	0,2972	699	1844	2539	555	1137	2885	13 5_W
3 5_Lwo	0,2425	666	1630	2364	565	938	2842	13 5_Wo
3 6_WoN	0,2197	817	1682	2152	747	1203	2464	13 6_WoN
3 6_WN	0,2262	864	1568	2213	788	1260	2579	13 6_WoN
3 7_Lwo	0,2099	645	1937	2756	748	1216	2782	13 7_Wo
3 7_Lwo	0,2619	719	1783	2192	656	1058	2753	13 7_Wo
3 8_L	0,2526	807	1926	2693	616	1360	2786	13 8_Lwo
38 -L	0,2093	793	1669	1848	828	1376	2699	13 8_Wo
3 9_L	0,3251	704	1792	2626	725	1191	2662	13 9_Wo
3 9_Lwo	0,2763	731	1587	2180	672	1139	2509	13 9_Wo
3 10_M	0,274	710	1828	2869	515	1359	2712	13 10_Lw
3 10_Lwo	0,244	662	1550	1900	548	1082	2992	13 10_Lwo
3 11_Lwo	0,234	798	1863	2514	634	1344	2849	13 11_M
3 11_Lwo	0,2408	907	1784	2911	653	1187	2857	13 11_Lw
3 12_Lwo	0,2689	711	1812	2416	593	1236	3107	13 12_Lwo
3 12_Lwo	0,3067	653	1480	1902	645	1242	2908	13 12_NL
3 13_WoN	0,1994	849	1714	1874	751	1473	2381	13 13_LwoN
3 13_WoN	0,2507	856	1630	2089	821	1280	2596	13 13_WoN
3 14_Lwo	0,2972	694	1742	2733	538	1107	2944	13 14_Wo
3 14_Lwo	0,2796	695	1795	2393	726	1218	2694	13 14_WoN
3 15_Lwo	0,2957	721	1965	2060	621	1348	2817	13 15_Lwo

0,2017	601	1789	2560	477	1161	2261
0,1976	503	1703	2389	606	998	2183
2086	557	172	24	579	987	2313
0,1812	489	1819	2367	552	1146	2154
0,2108	483	1879	2392	512	1003	59
0,2219	511	1749	21	661	929	49
2087	532	1797	221	612	106	2385
0,2229	539	179	24	50	937	76
15	64	1548	225	48	900	84
0,2497	654	1599	2168	492	913	2254
0,2743	61	1722	238	48	939	58
0,1592	44	1595	2194	489	966	2436
0,1722	591	1502	212	50	47	94
0,2082	62	1738	248	55	12	2138
0,1737	69	1820	24	63	05	2317
0,1873	49	1842	26	60	100	2228
0,1612	605	1681	1901	565	1045	2411
0,1855	66	1617	220	61	088	59
0,2028	667	1770	2485	702	117	2301
0,1832	45	1693	23	515	11	2117
0,1685	485	1797	277	527	1103	2211
0,1687	61	1695	236	600	1068	14
73	61	178	24	59	1130	2405
0,1503	555	1528	229	476	929	2247
1766	570	1636	198	488	99	2149
0,2025	684	1839	2351	720	1017	2215
0,2212	78	1798	271	733	1055	2226
,1985	536	1719	248	52	971	2381
0,1823	56	184	26	52	971	2379
,2472	60	163	21	607	969	2187
0,2064	604	1721	2595	621	1038	2180
0,2019	529	1809	259	516	997	2380
0,1809	618	1681	2649	53	78	2419
0,1784	584	1583	2176	649	1029	2223
0,173	608	1668	234	659	1049	2273
0,1752	525	1692	2119	51	998	2407
0,1661	638	1523	216	52	9	2346
0,1687	798	1707	2506	750	1124	2242
0,1617	765	1757	2579	768	1449	2530
0,1274	608	1549	2099	548	445	2356
0,1554	635	1536	2236	557	920	2306
0,175	623	1709	227	57	1037	27
0,1921	702	1755	2440	593	1061	2216
0,1525	525	1715	222	51		2187
0,1689	828	1960	2735	497	960	2228
0,1689	645	1764	2315	628	1045	2256
0,1574	608	1789	2271	683	1060	61
0,1879	519	1516	2428	540	1020	2275
0,2177	483	1591	243	56	899	302
0,156	577	1466	223	495	894	2127
0,1509	658	1232	21	45	912	2229
0,154	50	1363	241	413	845	2144
,1897	500	1409	2470	4	821	2172
, 2082	510	1458	2237	483	915	1
0,1837	557	1409	2255	507	925	2208
0,1568	505	1493	2425	452	867	2107
0,1886	524	1510	237	490	05	2330
0,1457	568	1536	2282	629	931	2257
0,1526	671	1458	2117	736	1098	2912
0,148	480	1453	2380	529	841	2111
0,1899	472	1592	2504	524	90	2055
0,203	532	1624	2402	506	987	2334
, 1226	619	1440	2368	821	1050	2364
0,2034	525	1430	2526	567	912	2223
,0977	541	1164	2461	52	1079	2259
0,1721	484	1504	2442	455	921	2322
0,2041	550	1572	2426	471	884	2318
0,1843	562	1439	2122	457	973	2248
0,1861	634	1430	2223	446	952	2221
0,162	541	1528	2445	493	991	2260
0,2085	566	1503	2411	486	965	2249
0,1632	602	1463	1998	581	929	2288
0,1598	659	1301	2421	514	928	2442
0,179	492	1446	2337	490	909	2098
0,127	575	1511	2363	606	1012	2100
0,2349	547	1545	228	4	932	2371

3 15_Lwo
3 16_Lwo
3 16_L
3 17_Lw
317 -M
3 18_Lwo
3 18_Lw
3 19_Lwo
3 19_Wo
3 20_Lwo
3 20_Lwo
3 21_Lwo
3 21_Lwo
322 _Lw
3 22_Lwo
3 23_Lwo
3 23_Lwo
3 24_Lwo
3 24_Lwo
3 25_Wo
3 25_Lwo
3 26_M
3 26_M
3 27_Lwo
3 27_Lw
328 _Lwo
3 28_L
3 29_Lwo
3 29_Lwo
3 30_Lwo
3 30_Lw
3 31_Lw
331 -W
3 2_Lwo
32 _Wo
3 1_L
3 1_Lwo
3 30_Lwo
3 30_Lwo
3 25_Lwo
3 25_Lwo
3 28_Wo
3 28_Wo
37 -Wo
3 7_Lwo
3 26_Wo
3 26_Wo
3 31_Lw
3 31_Lwo
3 24_Lw
3 24_Wo
3 22_Lwo
3 22_Lwo
3 23_Lwo
3 23_Wo
3 27_Lw
3 27_Lwo
3 4_Lwo
3 4_Lwo
$310 _$Lwo
3 10_Lwo
311 Lwo
311 Lwo
3 14_Lwo
3 14_Lwo
3 17_Lwo
3 17_Lwo
3 29_Lwo
3 29_Lwo
3 15_Lwo
3 15_Lwo
3 3_Wo
33 _Wo
313 _WoN
$313-W 0 N$
3 16_Lwo

3 16_Lwo

| 0,2777 | 748 | 1679 | 2100 | 588 | 1239 | 2798 | 13 | $15 _$Lwo |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}0,25 & 692 & 1741 & 2761 & 613 & 1292 & 3029 & 13 & 16 _ \text {_Lw }\end{array}$ $\begin{array}{lllllllll}0,2353 & 663 & 1770 & 2429 & 675 & 1316 & 2895 & 13 & 16 _ \text {Lwo }\end{array}$ $\begin{array}{lllllllll}0,3083 & 766 & 1810 & 2809 & 559 & 1374 & 2744 & 13 & 17 _M\end{array}$ | 0,2851 | 742 | 1556 | 1926 | 783 | 1341 | 2697 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 17 | 17 | | | | | | | $\begin{array}{lllllllll}0,2641 & 701 & 1900 & 2838 & 671 & 1210 & 2916 & 13 & 18 _L w\end{array}$ $\begin{array}{lllllllll}0,2697 & 647 & 1503 & 2187 & 599 & 1564 & 2451 & 13 & \text { 18_Lw }\end{array}$ | 0,2728 | 760 | 1808 | 2840 | 685 | 1278 | 2697 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19_Lwo | | | | | | | | 0,2434 730 $\begin{array}{llllllllll}0,2139 & 672 & 1806 & 2534 & 593 & 1304 & 2814 & 13 & 20 _W\end{array}$ | 0,2452 | 698 | 1785 | 2542 | 571 | 1264 | 2750 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $20 _W$ | 0,2726 | 773 | 1970 | 2499 | 652 | 1300 | 2677 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 21 | 21_Lw | | | | | | | | 0,2646 | 773 | 1872 | 2302 | 692 | 1145 | 2626 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 21 21_Lw $\begin{array}{lllllllll}0,3048 & 685 & 1814 & 2377 & 588 & 1209 & 2756 & 13 & 22 _W o\end{array}$ $\begin{array}{lllllllll}0,2546 & 681 & 1878 & 2353 & 617 & 1254 & 2752 & 13 & 22 _ \text {Wo }\end{array}$

$\begin{array}{lllllllll}0,3 & 681 & 1860 & 2881 & 723 & 1216 & 2610 & 13 & 23 \text { _Wo }\end{array}$ | 0,2981 | 713 | 1863 | 2867 | 629 | 1262 | 2511 | 13 | 23 _Wo |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}0,2753 & 745 & 1846 & 2587 & 673 & 1194 & 2606 & 13 & 24 \text {-Wo }\end{array}$ | 0,2371 | 708 | 1672 | 2095 | 693 | 1275 | 2679 | 13 | $24 _W o$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0,2221 | 758 | 1753 | 2846 | 662 | 1205 | 2835 | 13 | 25 _Wo |
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{rllllllll}0,25 & 718 & 1846 & 2703 & 645 & 1186 & 2803 & 13 & 25-W\end{array}$ $\begin{array}{lllllllll}0,2591 & 735 & 1756 & 2607 & 728 & 1339 & 2699 & 13 & \text { 26_Lwo }\end{array}$	0,2593	723	1817	2641	713	1286	2616	13	
26_M									0,2477	699	1868	2686	596	1242	2999	13		
:---	:---	:---	:---	:---	:---	:---	:---											
27	27								0,2786	658	1783	2714	507	1112	2811	13	$27-W o$	
:---	:---	:---	:---	:---	:---	:---	:---	:---		0,2857	765	1730	2593	575	1553	2761	13	$28-$ Lw
:---	:---	:---	:---	:---	:---	:---	:---	:---		0,2614	714	1488	2543	632	1341	2755	13	$28 _W o$
:---	:---	:---	:---	:---	:---	:---	:---	:---		0,2629	674	1833	2563	572	1374	2793	13	29 _Wo
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{llllllll}0,2228 & 690 & 1631 & 1879 & 636 & 1467 & 2416 & 13 \\ \text { 29_Lwo }\end{array}$ $\begin{array}{lllllllll}0,3137 & 704 & 1805 & 2309 & 560 & 1642 & 2742 & 13 & 30 _ \text {Lw }\end{array}$ $\begin{array}{lllllllll}0,2466 & 663 & 1858 & 2325 & 684 & 1585 & 2524 & 13 & 30 \text { _Lwo }\end{array}$	0,2632	717	1858	2827	518	1620	2735	13	$31 _M$
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0,2288	664	1678	2547	520	1523	2671	13
:---	:---	:---	:---	:---	:---	:---	:---											
$31 _M$									0,2305	843	1896	2727	666	1209	2831	13	2	
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lllllllll}0,2357 & 851 & 1783 & 2393 & 624 & 1036 & 2679 & 13 & \text { 2_Lwo }\end{array}$	0,3006	739	1810	2624	758	1212	2840	13	1 _Wo
:---	:---	:---	:---	:---	:---	:---	:---	:---										
0,2818	753	1858	2887	771	1275	2731	13	1	$\begin{array}{lllllllll}0,2818 & 753 & 1858 & 2887 & 771 & 1275 & 2731 & \text { 13 1_Lwo } \\ 0,3286 & 715 & 1781 & 2941 & 600 & 1574 & 2895 & \text { 13 30_Lwo }\end{array}$ $\begin{array}{lllllllll}0,3549 & 726 & 1777 & 2910 & 593 & 1750 & 2670 & 13 & 30 _ \text {_Lwo }\end{array}$	0,2499	739	1814	2905	643	1242	2885	13	25
:---	:---	:---	:---	:---	:---	:---	:---	:---										
0									$\begin{array}{lllllllll}0,2096 & 718 & 1824 & 2791 & 632 & 1138 & 2873 & 13 & 25 \text { _Wo }\end{array}$ $\begin{array}{lllllllll}0,264 & 785 & 1761 & 2749 & 615 & 1597 & 2715 & 13 & 28 \text { _Lwo }\end{array}$ $\begin{array}{lllllllll}0,1994 & 682 & 1542 & 2759 & 523 & 1640 & 2733 & 13 & 28 \text { _Wo }\end{array}$	0,1793	679	1913	2913	726	1252	2723	13	$7 _W N$
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0,2235	681	1877	2621	624	1154	2779	13
:---	:---	:---	:---	:---	:---	:---	:---											
7	7_Wo							$\begin{array}{lllllllll}0,2563 & 740 & 1858 & 2945 & 708 & 1346 & 2649 & 13 & 26-W o\end{array}$ $\begin{array}{lllllllll}0,2712 & 710 & 1877 & 2845 & 679 & 1207 & 2541 & 13 & \text { 26_Lwo }\end{array}$ $\begin{array}{lllllllll}0,2346 & 691 & 1888 & 2844 & 550 & 1704 & 2847 & 13 & 31 _M\end{array}$ $\begin{array}{llllllllll}0,2454 & 649 & 1926 & 2758 & 574 & 1488 & 2677 & 13 & 31 _ \text {Lw } \\ 0,2521 & 693 & 1912 & 2440 & 663 & 1346 & 2599 & 13 & 24 _W o\end{array}$ $\begin{array}{lllllllll}0,2366 & 709 & 1783 & 2736 & 655 & 1125 & 2362 & 13 & 24-W o\end{array}$	0,2298	658	1884	2887	589	1400	2617	13		
:---	:---	:---	:---	:---	:---	:---	:---											
222	-Wo							$0,2332 \quad 690 \quad 1843 \quad 2834591 \quad 1310 \quad 2603$ 13 22_NL	0,334	688	1916	2900	700	1203	2585	13	23 _Lwo	
---:	:---	:---	:---	:---	:---	:---	:---	:---										
0,2511	635	1947	2931	761	1373	2528	13	23 Wo	$\begin{array}{lllllllll}0,2318 & 664 & 1960 & 2857 & 552 & 1136 & 2919 & 13 & 27 \\ \text { _Wo }\end{array}$ $\begin{array}{llllllll}0,253 & 633 & 2031 & 2825 & 605 & 1109 & 2842 & 13 \\ 27 & 27-W 0\end{array}$ $\begin{array}{lllllllll}0,2732 & 721 & 1753 & 2660 & 717 & 1290 & 2723 & 13 & \text { 4_Lwo }\end{array}$	0,2672	712	1820	2750	694	1259	2783	13	
:---	:---	:---	:---	:---	:---	:---	:---											
4_Lwo								$\begin{array}{lllllllll}0,2265 & 663 & 1902 & 2741 & 616 & 1316 & 3053 & 13 & 10 _W o\end{array}$	0,2258	696	1852	2767	618	1148	2817	13		
:---	:---	:---	:---	:---	:---	:---	:---											
10	$10-W$								0,2212	809	1901	2786	660	1504	2793	13	11 _Lwo	
---:	---:	---:	---:	---:	---:	---:	---:	:---										
0,191	796	1758	2596	619	1417	2848	13	11 Lwo	$\begin{array}{lllllllll}0,2122 & 671 & 1871 & 2853 & 784 & 1379 & 2475 & 13 & 14 _ \text {-WoN }\end{array}$	0,2283	655	1982	2764	677	1306	2715	13	
:---	:---	:---	:---	:---	:---	:---	:---											
14	14							$\begin{array}{lllllllll}0,288 & 781 & 1899 & 2814 & 681 & 1346 & 2704 & 13 & 17 _M\end{array}$	0,2428	752	1774	1972	817	1328	2543	13		
:---	:---	:---	:---	:---	:---	:---	:---											
17	$17-M$							$\begin{array}{lllllllll}0,1988 & 669 & 1904 & 2904 & 592 & 1693 & 2887 & 13 & 29-W o\end{array}$ $\begin{array}{lllllllll}0,2054 & 597 & 1617 & 2429 & 550 & 1471 & 2513 & 13 & \text { 29_Lwo }\end{array}$ $\begin{array}{lllllllll}0,2976 & 797 & 1925 & 2454 & 630 & 1312 & 2828 & 13 & 15 _ \text {_Lwo }\end{array}$ $\begin{array}{lllllllll}0,2617 & 784 & 1512 & 2166 & 669 & 1306 & 2563 & 13 & 15 _ \text {Lwo }\end{array}$ $\begin{array}{lllllllll}0,2078 & 650 & 1876 & 2841 & 674 & 1114 & 2760 & 13 & 3-W o\end{array}$ $\begin{array}{lllllllll}0,1774 & 687 & 1795 & 2765 & 623 & 1113 & 2704 & 13 & 3-W\end{array}$	0,2609	831	1820	2231	735	1243	2623	13		
:---	:---	:---	:---	:---	:---	:---	:---											
13	13								0,2612	838	1738	1953	778	1306	2600	13	13 _WoN	
:---	:---	:---	:---	:---	:---	:---	:---	:---										
0	02055	685	1854	2838	647	1401	2759	13										
16									$\begin{array}{lllllllll}0,2085 & 685 & 1854 & 2838 & 647 & 1401 & 2759 & 13 & 16 _ \text {Lw }\end{array}$									

	553	1583	2460	540	1105	2446
0,1656	461	1607	2426	453		2457
0,1648	5	1637	2430			
	581	1632	23			
2178	574	1622	213			
	494	1432	2351			2325
238	488	1406	244			
	445	156				
0,2088	490	146	23			2224
59	45	1510	2298	394	100	
0,1643	498	1434	2399	400		2196
0,2603	527	1623	2350	43		
	483	1483	2307			
0,1275	53	14	2260	461	1067	2064
	544	15	225			
0,2426	485	15	21	550		2283
086	473	1602	21	580		
0,2104	516	147	48	95		253
171	499	149	251	553		2217
05	496		236			
0,157	479	14	24	36		2169
	499		24			
0,2238	46	1	24	526		2279
	500	137	23			
	536	146	2404			
0,2342	550	135	227	427	91	
	502	114	22		1029	
	423	1414	24	439		2237
0,1684	53		23			
0,193	522	146	247			
0,2097	510	1475	25	476	1013	
	492	1327	226			
	500	136	23	389	106	
	609	142	22	49		
	605	13	22			
	516	1452	23	55		2342
	497	153	242			
888	485	148	248	504	1030	
	510	1503	249		116	
	490	1382	240			
	54	13	23	O	,	2317
	514					
19	512	11	19	52		
0,136	49					
	528	15	239			
	501	1445	244			
	511	1494	2419	46		
	498	136	2369		10	
	516	136				
	475	14	2503			2295
	496		24			
	49	1342	21		11	
	522	1467	2440			
	446					
	45	163	256			226
	527	1443	246			2214
	572	1375	241	450		22
	509		2316			22
		1483	2339			
	487	1472	2348		1009	
813	476	1487	2279			,
	555	1566	2324			22
1945	597	13	2579		864	,
1473	477	1354	2370	586	,	162
	460	1442	2417		104	2077
	521	15	2303	463	1052	2278
1957	553	1571	2408	52		2193
,1156	485	1291	2330		116	,
,1797	469	1483	2457	466		2123
,2231	556	1436	2397	44	95	2507
0,2488	532	1617	2428		1040	2503
0,145	454	1343	2333	444		2145
0,13	528	1116	2315	400	821	2216
0,1987	647	1409	2311	529	9	2166
403	629	1467	2241	589	99	02

3 16_Lwo	0,2126	708	1768	2844	600	1253	2961	13 16_Lwo
3 9_Lwo	0,3306	686	1795	2876	708	1202	2721	13 9_Wo
3 9_L	0,3265	720	1712	2457	768	1231	2535	13 9_Wo
3 18_M	0,222	671	1933	2729	625	1597	2817	13 18_Lw
3 18_Lwo	0,2395	640	1956	2794	606	1410	2789	13 18_Lw
3 19_Lw	0,2696	753	1836	2731	617	1237	2584	13 19_Lwo
3 19_Lw	0,2694	731	1836	2527	681	1179	2576	13 19-Lwo
3 12_Lwo	0,231	665	1834	2521	659	1370	2883	13 12_Wo
3 12_Lw	0,2644	678	1816	2693	568	1323	2873	13 12_Lwo
3 6_WN	0,2302	809	1805	2296	727	1338	2330	136 _WoN
3 6_WN	0,2644	844	1744	1826	881	1372	2643	13 6_WoN
3 5_Lwo	0,2295	702	1694	2822	652	1118	2865	13 5_Wo
3 5_Lwo	0,2378	721	1926	2801	621	1033	2858	13 5_Wo
3 21_L	0,2505	768	1886	2630	731	1357	2706	13 21_Lwo
3 21_L	0,2565	770	1832	2469	744	1307	2637	13 21_Lw
3 20_Lw	0,2572	723	1827	2702	601	1250	2735	13 20_W
3 20_Lwo	0,2104	686	1865	2343	560	1455	2786	13 20_Wo
3 8_Lwo	0,248	797	1865	2514	717	1398	2828	13 8_Lwo
3 8_Lwo	0,23	773	1754	2574	755	1327	2671	13 8_Lwo
4 1_Lwo	0,2267	606	2165	2964	607	1349	2764	14 1_Wo
4 1_Lw	0,2909	662	2049	2991	591	1369	2802	14 1_Wo
4 2_Wo	0,2311	704	2330	2968	543	1218	2776	14 2_Wo
4 2_W	0,2484	742	2050	2833	428	1336	2736	14 2_W
4 3_W	0,131	628	1990	3054	477	1153	2765	14 3_Wo
4 3_W	0,1403	586	2193	2925	457	1087	2731	14 3_Wo
4 4_Lw	0,2662	670	2011	2799	463	1111	2793	14 4_Lwo
4 4_Lw	0,2754	722	1990	2743	332	1234	2625	14 4_Wo
4 5_Wo	0,1627	585	2060	3010	471	1068	2690	14 5_Wo
4 5_W	0,161	577	1879	2862	316	1076	2669	14 5_Lwo
4 6_Lw	0,2055	761	2155	2795	543	1194	2521	14 6_Wo
4 6_WN	0,1934	808	2142	2896	674	1365	2801	14 6_Wo
4 7_Lwo	0,1525	594	1662	2754	617	1328	2667	14 7_Wo
4 7_Lwo	0,1137	590	2073	2892	533	1162	2526	14 7_LWo
4 8_Lw	0,2479	709	2129	3017	488	1391	2893	14 8_Lwo
4 8_Lw	0,2599	721	2086	3049	404	1301	2887	14 8_Lwo
4 9_Lw	0,2569	617	2216	2949	494	1146	2739	14 9_Wo
4 9_W	0,3093	670	2101	3040	346	1087	2849	14 9_Lwo
4 10_Lw	0,1484	604	2124	2985	439	1350	2857	14 10_Wo
4 10_Lw	0,1198	567	1755	2807	378	1271	2954	14 10_Lwo
4 11_Lw	0,2434	669	2058	2792	438	1205	2850	14 11_Lwo
4 11_Lw	0,2447	739	2115	2815	445	1302	2792	14 11_Lwo
4 12_Lw	0,1498	612	2098	2909	479	1448	2853	14 12_Lwo
4 12_W	0,1124	615	1868	2739	442	1428	2863	14 12_Wo
4 13_WN	0,2053	644	2328	2907	720	1711	2833	14 13_W
4 13_LwN	0,2339	706	2169	2887	489	1370	2703	14 13_W
4 14_NL	0,1814	547	2101	3061	490	1135	2708	14 14_Wo
4 14_WN	0,123	590	1919	2777	396	1196	2277	14 14_Wo
4 15_W	0,2294	697	2162	2986	490	1237	2740	14 15_Lwo
4 15_W	0,229	763	2031	2871	484	1233	2859	14 15_M
4 16_Lw	0,1763	518	1579	2653	454	1473	2913	14 16_Wo
4 16_Lw	0,1403	597	2108	2854	402	1470	2893	14 16_Lwo
4 17_Lw	0,2781	669	2075	2841	536	1260	2886	14 17_L
4 17_Lw	0,283	709	2116	3032	407	1236	2850	14 17_L
4 18_Lw	0,1799	598	2185	2957	438	1293	2951	14 18_Lw
4 18_Lw	0,1168	639	1908	2885	409	1399	2980	14 18_Lw
4 19_W	0,254	608	2108	2959	506	1491	2842	14 19_Wo
4 19_W	0,2983	678	2013	2962	437	1396	2631	14 19_Wo
4 20_Lw	0,1357	526	2166	3014	418	1430	2876	14 20_Wo
4 20_Lw	0,1298	639	1903	2937	433	1373	2902	14 20_M
4 21_Lwo	0,279	696	2175	3067	490	1254	2819	14 21_Lwo
4 21_Lw	0,3052	701	2138	3065	412	1209	2702	14 21_Lw
4 22_Lw	0,2113	549	2237	2948	386	1131	2767	14 22_Wo
4 22_Lw	0,1303	570	2009	2808	332	1196	2692	14 22_Lw
4 23_Lw	0,2896	633	2104	2784	415	1120	2627	14 23_Lwo
4 23_Lw	0,2869	675	2073	2874	480	1249	2783	14 23_Wo
4 24_Lw	0,2667	638	2131	2967	522	1235	2705	14 24_Wo
4 24_Lw	0,2447	719	2179	3004	469	1133	2809	14 24_Wo
4 25_Wo	0,1446	589	2186	3030	520	1183	2793	14 25_Wo
4 25_Lw	0,1545	601	2172	2905	454	1070	2779	14 25_Wo
4 26_Lwo	0,2254	654	2122	2947	529	1200	2770	14 26_Lwo
4 26_Lw	0,2799	731	2157	2965	399	1211	2822	14 26_Wo
4 27_Wo	0,1495	556	2149	2993	487	1206	2770	14 27_Wo
4 27_W	0,1455	582	2050	2924	370	1009	2791	14 27_Wo
4 28_Wo	0,2233	700	1862	2810	471	1388	2814	14 28_Lw
4 28_Lw	0,2372	768	1925	2862	400	1266	2757	14 28_Wo
4 29_Lw	0,1553	626	2276	2977	434	1347	283	14 29_Lwo

0,25	487	144	256	54	41	2337
0,26	547	130	236	456	1488	2724
0,195	474	137	229	38	1023	
	533	1208				
	481	146	48	91	106	
	461	14	2472	463	96	2447
0,1759	611	155	22	639		2250
0,1945	653	14	220	59	9	2212
0,140	508	135	23	503		
0,153	506	142	236	493	00	
					101	
	478	1475	241	39		
0,1895	486	15	248	483		2324
0,242	405	160	23	533	106	2368
0,2393	536	153	2469	510	103	2334
0,2096	528	179	23	519	迷	
0,148	464	174	240	40	1166	2094
	572	1929				
		183				
		1765	267	70		
0,126	522	168	24	44	106	2381
0,170	532	168	24	497	1042	
0,128	525	171	245	48	107	
0,146	503	17	268		1035	
0,139	539	17	264		1024	
0,173	630	1268	223			2135
	602		26			
	569	1650	26			
	562	1453	259	53	03	
0,175	574	1849	275	492	106	
0,131	532	192	285	502	1592	
0,173	524	167				
0,181	520	172	273			
0,1434	559	16	25			
	575	148	26			
	641	1580	45			
	589	813	264	46	108	
0,165	561	176	28	49	11	
	528	158	258	47		
	641	117				
	628	117				
0.141	526	1786	278			
	522	169	26			
	575	1865	275			
0,	459	2026	2932	401	12	
0,133	512	1716	273	50	1236	
0,145	515	1734	271			
0,2001	555	1876	282	51		
	397	1411	214			
	515	1777	272			
	520	176				
	472	834	2445			
	511	1786	234			
	536	171	27	476	1281	
0,254	376	2086	295	738	2216	
0,181	548	1823	247	48		
0,1744	519	1953	281	519	1132	
	551	1737	258			
	5	173				
	50	189				
0,179	546	1785	2558			
0,160	557	1659	25	54	1079	
0,171	565	1750	275	5	1336	
0,1278	517	1707	265	516	1136	2295
0,122	509	1754	270			
0,1912	546	1687	258		104	
	532	1712	573	4	硣	
1624	527	1707	2617	9	987	2330
01	531	1637	2621	52	102	2429
1953	541	1362	2166	430	115	2621
1556	519	1546	2350	461	110	
164	576	18	282		1201	

4 29＿Lw	0，1931	601	2135	3042	454	1422	2821	14 29＿Wo
4 30＿Lwo	0，2396	662	2105	3013	527	1424	2733	14 30＿Lw
4 30＿Lwo	0，2717	574	1535	2475	460	1647	2829	14 30＿Lw
4 31＿Lw	0，1704	659	2030	3034	437	1338	2850	14 31＿Wo
4 31＿Lw	0，2024	636	2031	2981	438	1533	2805	14 31＿Lw
4 2＿Wo	0，2063	748	2060	2816	525	1155	2791	14 2＿Wo
4 2＿Lwo	0，2379	776	2044	2891	581	1332	2797	14 2＿Wo
4 1＿Lwo	0，2604	619	2174	2869	519	1106	2730	14 1＿Wo
4 1＿Lwo	0，295	647	2127	2997	566	1184	2720	14 1＿Wo
4 30＿Lwo	0，2519	669	2084	2959	515	1443	2842	14 30＿Lw
4 30＿Lw	0，2757	743	1999	2918	401	1401	2893	14 30＿Lwo
4 25＿Wo	0，1418	656	2152	2990	526	1311	2772	14 25＿Wo
4 25＿Wo	0，119	587	2004	2926	494	1221	2801	14 25＿Wo
4 28＿Lwo	0，2254	774	1861	2798	515	1556	2863	14 28＿W
4 28＿Lwo	0，1966	696	1838	2845	530	1409	2749	14 28＿W
4 7＿Wo	0，1216	637	2147	2947	523	1184	2481	14 7＿Wo
4 7＿W	0，1006	497	1740	2733	516	1051	2666	14 7＿Wo
4 26＿Lwo	0，2198	688	2034	2884	565	1299	2697	14 26＿Lwo
4 26＿Lwo	0，2361	754	2002	2953	536	1266	2765	14 26＿Lwo
4 31＿Lw	0，1634	606	1954	3003	405	1397	2946	14 31＿Lw
4 31＿Lw	0，1625	601	2015	2817	381	1586	2844	14 31＿Lwo
4 24＿Lw	0，2337	624	2198	3022	497	1219	2797	14 24＿Lwo
4 24＿Lwo	0，2295	717	2046	3092	552	1184	2737	14 24＿Lwo
422 －W	0，149	513	2236	3024	454	1272	2618	14 22＿W
4 22＿W	0，1427	584	2056	2929	423	1195	2728	14 22＿Lw
4 23＿Lwo	0，2629	651	2181	2859	522	1206	2542	14 23＿Lwo
4 23＿Lwo	0，2524	684	2135	2969	599	1228	2764	14 23＿Wo
4 27＿Lwo	0，1734	665	2049	2934	507	1216	2746	14 27＿W
4 27＿W	0，1424	620	1971	2805	418	1113	2729	14 27＿W
4 4＿Lwo	0，214	691	1970	2790	613	1395	2799	14 4＿Lwo
4 4＿Lw	0，2589	791	1943	2841	576	1288	2852	14 4＿Lwo
4 10＿Lw	0，1469	678	1958	2913	426	1265	2840	14 10＿Wo
4 10＿Lw	0，139	626	1953	2866	418	1265	2831	14 10＿Wo
4 11＿Lwo	0，2444	812	1911	2738	480	1158	2902	14 11＿Lw
4 11＿Lw	0，2763	804	1891	2946	438	1257	2829	14 11＿L
4 14＿Lw	0，1688	656	1964	2938	455	1163	2780	14 14＿Wo
4 14＿Wo	0，1149	665	1841	2810	523	1340	2019	14 14＿Wo
4 17＿Lw	0，2592	717	1974	3003	481	1294	2828	14 17＿Lw
4 17＿Lwo	0，2456	700	2045	3047	653	1344	2760	14 17＿M
4 29＿W	0，1287	618	2045	2960	440	1533	2801	14 29＿Wo
4 29＿W	0，1273	557	1940	2851	355	1352	2738	14 29＿Lwo
4 15＿Lwo	0，2251	777	2029	2830	485	1467	2937	14 15＿Lwo
4 15＿M	0，2758	729	2023	2941	490	1304	2761	14 15＿Lw
4 3＿Wo	0，1251	606	1957	2972	486	1194	2689	14 3＿Wo
4 3＿Wo	0，1082	546	1900	2727	445	1098	2567	14 3＿Wo
4 13＿LwN	0，2225	741	2111	2891	534	1194	2377	14 13＿WN
4 13＿WN	0，2668	797	1910	2902	544	1397	2430	14 13＿WoN
4 16＿Lw	0，1464	668	1985	2984	469	1326	2976	14 16＿Wo
4 16＿Lw	0，1512	639	1942	2879	454	1315	2850	14 16＿Wo
4 9＿Lwo	0，2836	638	2225	2918	566	1086	2822	14 9＿Lwo
4 9＿Lwo	0，2548	685	2183	3084	580	1174	2849	14 9＿Wo
4 18＿Lw	0，1627	633	1979	3085	436	1351	3014	14 18＿Wo
4 18＿Lw	0，1229	658	1689	2795	441	1264	2967	14 18＿Lwo
4 19＿Lwo	0，2598	641	2100	2928	516	1190	2722	14 19＿Wo
4 19＿Lw	0，2493	669	1972	2938	584	1345	2760	14 19＿Wo
4 12＿Wo	0，1155	611	2023	2953	444	1395	2939	14 12＿Lwo
4 12＿W	0，1356	601	1817	2837	422	1534	2945	14 12＿Lw
4 6＿WoN	0，1836	742	2134	2872	651	1192	2776	14 6＿WoN
4 6＿WoN	0，2189	752	2081	2923	667	1277	2597	14 6＿W
4 5＿Wo	0，1121	652	1884	2760	466	1019	2838	14 5＿Wo
4 5＿Wo	0，1086	573	1777	2823	425	985	2248	14 5＿W
4 21＿Lw	0，2588	663	2087	2819	485	1156	2589	14 21＿Lw
4 21＿Lw	0，3021	707	2144	2974	389	1241	2786	14 21＿Lw
4 20＿Lw	0，1414	555	2113	2933	437	1321	2866	14 20＿W
4 20＿W	0，1264	637	1762	2625	384	1176	2739	14 20＿W
4 8＿Lw	0，2405	636	2163	2988	472	1258	2805	14 8＿Lwo
4 8＿Lw	0，2822	709	2154	2982	391	1290	2862	14 8＿Lwo
51 －Wo	0，2267	655	1791	2289	579	1137	2517	15 1＿Wo
51 ＿Wo	0，1824	643	2109	2574	584	1395	2737	15 1＿Wo
5 2＿Wo	0，132	741	1989	2395	649	1438	2761	15 2＿Wo
5 2＿W	0，1282	718	2207	3151	534	1144	2543	15 2＿Wo
5 3＿Wo	0，1298	694	2062	2755	601	1182	2699	15 3＿Wo
5 3＿Wo	0，0891	735	2024	2928	565	1084	2729	15 3＿Wo
5 4＿Wo	0，1789	711	2076	2904	591	1440	2516	15 4＿Wo
5 4＿Wo	0，1649	673	2112	3028	569	1441	2815	15 4＿Wo
5 5＿Wo	0，1255	684	2055	2851	583	1085	2679	15 5＿W

	56	157	25	448		
0，2149	522	163	25	430		
0，1785	552	1595	2651	427	1376	
	523	17	276	422	1345	2395
0，1448	52	1729	261	432	138	451
68	61	161	24	50		2365
0，1233	61	1648	24	514		
	526	1797		526	1065	2240
0，1403	527	1752	246	598	105	276
0，2377	583	15	26	481	119	2410
0，2054	600	15	259	500	1176	2324
1377	542	1743	2651	514		
	547	1688	267	512		
0，1845	541	1381	230	414	1193	2406
0，157	50	11	24	415	936	2476
0，112	541	1643	265	523	1005	22
11	533	15			21	
	564	1701	2610	503	02	
0，2093	5	1722	26	4	110	2366
174	515	170	270	38	138	2
1291	531	1648	253	406		2435
	561	1642	260	485		
0，173	557	15	25	475		
0，1604	546	16	25	409	1236	2252
32	532	165	266	412	119	2500
0，2184	553	17	25	523		296
0，1682	517	16	257	502		
0，166	499	170			07	
164	525	163	26	408	11	2460
1744	567	161	248	443		2482
16	58	12	247	444		
0，1179	5	1688	26	511	1129	
	548	15		471		
0，238	622	12	24	347		
，	606	13	247	351	1088	
	509	167	265	51	106	2293
，147	530	167	266	517	1096	151
	5		270	438		
	512	17		4		
1	55	156	25	，		
55	5	158	2563	494		398
	595	17	27	46	1035	2590
，	62	1397		432		
	545	164	24	489	1016	
	53	16	2567	463		
7	642	123	222	38	008	2353
1893	618	152	269	45	101	
，	540	1626	26		117	
	517	1630	2629	456		
0，225	540	171		51		
	56	147	255	50	126	2480
	515	1635		46	207	，
	562		258	466	1207	析
						307
	509	177	247	48	18	124
1	551	1678	267	436	128	2409
0，1581	580	1461	2583	381	1070	2369
，1637	632	1129	，	498		230
，	59		241	434		
路	529	1626	256	457	97	405
	522	1500	2537	441	104	2609
0，2268	559	1941	2641	427		2444
0，1706	9	88	272	449	97	2208
0，0914	525	146	252	395	115	促
，121	485	1657	2697	427	1354	500
，1804	573	1762	2767	445	976	2666
1614	555	1787	278	617	159	665
2607	628	2078	293	538	1081	2608
，3041	637	207	2958	500	1330	273
0，2166	770	2196	3109	559	1070	2743
0，225	788	2180	3039	560	1072	2539
0，1596	629	2095	2930	561	1104	053
0，1842	560	2096	2934	507	1095	2480
0，2402	676	1960	2832	515	1037	2614
0，1935	611	1942	2829	620	1341	245
07	65	204	2853	530	10	

5 5_Wo	0,1034	672	2037	2491	615	1101	2775	15 5_Wo
5 6_WN	0,1915	626	2177	2582	616	1183	2457	15 6_WoN
5 6_WN	0,1554	691	2231	3049	499	1202	2533	15 6_WN
5 7_Lw	0,1419	631	2148	2772	510	1213	2584	15 7_Wo
5 7_Lwo	0,1738	764	2009	2989	546	1026	2553	15 7_Wo
5 8_Lwo	0,2049	686	2172	3177	519	1552	3035	15 8_Lwo
58 -Lw	0,1831	734	2143	3242	556	1533	3079	15 8_Wo
59 -Wo	0,2365	668	2180	2337	596	1421	2667	15 9_Wo
$59 _$Lw	0,2148	721	2136	3155	479	1131	2460	15 9_Wo
$510 _$Lwo	0,1936	692	1849	2706	547	1145	3145	15 10_Wo
5 10_Lwo	0,1974	715	2032	2323	562	1300	2950	15 10_Lw
5 11_Lwo	0,1715	737	1964	2734	534	1519	3032	15 11_Lw
5 11_Lwo	0,1816	658	2018	2568	527	1464	2983	15 11_Lw
5 12_Lwo	0,1613	666	2068	2255	591	1467	2721	15 12_Lwo
5 12_Wo	0,1351	725	2005	2976	585	1463	2865	15 12_Lwo
513 _WoN	0,2012	700	2265	3092	676	1487	2287	15 13_WoN
5 13_WN	0,1766	645	1647	2259	544	1322	2512	15 13_WoN
5 14_Lw	0,1357	682	1957	2114	596	1352	2445	15 14_Wo
514 -W	0,1373	692	2021	2584	560	1322	2554	15 14_W
515 M	0,1581	621	1864	2409	525	1393	2976	15 15_Lw
5 15_M	0,1843	677	1942	2120	537	1538	2645	15 15_W
5 16_Lwo	0,121	612	2091	2852	506	1524	2781	15 16_Lw
5 16_Lwo	0,1009	654	2010	2904	523	1570	3013	15 16_Wo
5 17_M	0,2112	487	2023	3132	541	1408	2676	15 17_M
5 17_M	0,2024	639	2207	3158	662	1608	2925	15 17_M
5 18_Wo	0,141	617	2034	2237	460	1513	3059	15 18_NL
5 18_Lw	0,1392	714	2068	2877	466	1511	2576	15 18_Lw
5 19_Wo	0,1754	667	1944	2880	630	1319	2769	15 19_Wo
5 19_Lwo	0,1821	651	2043	2893	576	1328	2707	15 19_W
5 20_Lwo	0,1509	638	1875	2182	530	1222	2805	15 20_Wo
5 20_Lwo	0,1175	674	2024	2962	524	1311	2651	15 20_Wo
5 21_W	0,1841	634	1545	2307	563	1513	2744	15 21_Wo
5 21_W	0,1834	653	2110	3109	501	1707	2845	15 21_Wo
5 22_Lw	0,1055	586	2069	3001	499	1636	2670	15 22_Lw
5 22_Lwo	0,1251	691	2109	3042	511	1400	2785	15 22_Lw
5 23_Wo	0,2231	668	2093	3023	614	1217	2635	15 23_Wo
5 23_Lwo	0,173	637	2137	3005	598	1346	2656	15 23_W
5 24_Lw	0,181	727	1760	2497	625	1283	2893	15 24_Wo
5 24_Lw	0,1888	628	1844	2915	608	1221	2891	15 24_W
5 25_Wo	0,1342	632	2114	2882	637	1341	2942	15 25_Lw
5 25_Wo	0,1599	683	1767	2453	628	1367	2919	15 25_Wo
5 26_Lwo	0,2024	695	1669	2133	626	1301	2906	15 26_Wo
5 26_Wo	0,2167	691	2102	3068	557	1196	3003	15 26_W
5 27_Lwo	0,1604	661	2110	2938	521	1077	2805	15 27_Wo
5 27_Lwo	0,169	710	1903	2878	480	1179	2960	15 27_Wo
528 _W	0,1549	688	1878	2674	580	1594	2953	15 28_W
5 28_Lwo	0,1841	662	1956	2952	513	1571	2907	15 28_W
5 29_Lwo	0,1549	592	2128	2925	527	1622	2840	15 29_Lw
5 29_Lw	0,1223	672	1972	2924	511	1650	2895	15 29_Lw
5 30_Lw	0,2399	666	2104	2558	492	1718	2844	15 30_M
5 30_Lw	0,2183	638	1922	2696	495	1617	3032	15 30_M
5 31_Lw	0,1825	622	1916	2126	456	1812	2967	15 31_M
5 31_Lw	0,1542	681	1965	2429	471	1869	3040	15 31_M
52 _Wo	0,1471	714	2131	2570	661	1566	2714	15 2_Wo
52 _Wo	0,1639	682	2169	2763	584	1265	2630	15 2_W
5 1_Lwo	0,2088	643	2120	2868	653	1366	2721	15 1_Wo
5 1_Lwo	0,216	655	2058	2856	577	1188	2545	15 1_Wo
5 30_Lwo	0,2261	697	2018	2808	544	1544	2772	15 30_M
5 30_Lw	0,2281	650	2100	3026	458	1650	2953	15 30_M
5 25_Wo	0,1627	634	2040	2362	619	1311	2715	15 25_Wo
5 25_Wo	0,1821	684	1982	2248	584	1117	2671	15 25_W
528 _Lw	0,1832	700	1922	2699	595	1487	2743	15 28_W
5 28_Lw	0,1687	702	1900	2801	513	1598	2738	15 28_W
5 7_Lwo	0,1307	619	2040	2793	613	1245	2547	15 7_Wo
5 7_Lwo	0,117	685	1974	2838	500	1159	2523	15 7_Wo
5 26_Lwo	0,2203	655	2075	2878	564	1256	2703	15 26_Wo
5 26_Lw	0,2371	664	1842	2608	564	1197	2829	15 26_W
5 31_Lw	0,2042	631	2134	2835	484	1438	2695	15 31_NL
5 31_Lwo	0,1407	672	2071	2697	531	1681	2811	15 31_Lw
5 24_Wo	0,1675	664	2026	2697	637	1342	2686	15 24_Wo
5 24_Wo	0,1918	677	2132	2905	582	1251	2727	15 24_W
5 22_Wo	0,1701	552	2124	2975	521	1393	2661	15 22_Wo
5 22_Wo	0,126	703	2163	3072	519	1328	2727	15 22_Wo
5 23_Wo	0,2212	698	2125	3100	661	1125	2620	15 23_Wo
5 23_Lwo	0,2013	663	2194	3138	563	1321	2747	15 23_W
5 27_Lw	0,1851	661	2034	2956	472	1247	2933	15 27_W

	567	2023	2768	484	103	
	746	2121	3211	74		
	754					
	679					
	73	220	312	56	131	
,245	671	20	3019	57		
,243	687	209	3035	59	118	
,189	640	211	300	592	117	
, 208	586	203	283	470	110	
	757					
	615	2159				
	580	2053	295	502	292	
0,532	691	218	310	756	136	
,248	778	21	3039	600	118	
,216	64	21	30	54	123	
	62	208	289	49		
	531	2114	3072	516	13	
,248	676	218	303	526	136	
,2474	718	21	3100	515	129	
, 249	590	21	2932	517	135	
, 86	557	209	2824	446		
	629	222	297			
		214	293			
	649	222	304	54	12	
	663	221	310	56		
	579	218		519		
	537	21		493		
	594	218		573		
		209		559		
	606	215	30	500		
	54	224	300	52		
	684			537		
	5			512		
	58	220	3021			
0,18		181	283	550		
	594	215	29	457		
	589	16	292	46		
	637	207		448		
	63					
	6	220				
		2159				
	633	215	29			
	597	205	300	62		
	632	210	29	50	121	
	631	203		613		
	656					
		217	30			
	58	213	290		11	
,	688	2018	310	513		
	695	205	303	546		
	566	224				
		2118				
				54		
		2048	93			
2067	625	2176	2939	55	1317	
202	607	2112	2944	56	122	
117	661	2154	294	564	106	
	634	2112	3006	470	121	

27_Lw	0,1677	772	1889	2771	498	1167	2790	27_Wo
5 4_Wo	0,1766	681	2100	2822	627	1362	2963	15 4_W
5 4_Wo	0,1705	691	2113	2979	574	1308	2927	15 4_W
5 10_Lwo	0,1801	651	2187	3211	552	1286	3081	15 10_Lwo
5 10_Lwo	0,2	697	1912	2116	522	1295	2963	15 10_Lwo
$511 _$Lw	0,1887	717	2161	2808	547	1472	2833	15 11_Lw
5 11_Lwo	0,1724	705	2127	2934	507	1427	2793	15 11_Lw
5 14_Lwo	0,168	680	2048	2890	589	1416	2580	15 14_Lwo
514 _Wo	0,1135	715	1993	2792	597	1388	2511	15 14_Lwo
5 17_Lw	0,1754	680	1908	2359	584	1257	2684	15 17_M
5 17_Lw	0,1812	699	2167	3137	540	1309	2777	15 17_Lw
5 29_Lwo	0,139	649	2007	2810	486	1676	2737	15 29_Lw
5 29_Wo	0,1184	627	2040	3032	506	1773	2860	15 29_Lw
5 15_Lwo	0,1871	678	2276	2828	547	1377	2632	15 15_Lw
5 15_Lwo	0,1891	657	2111	3067	595	1452	2824	15 15_Lw
5 3_Wo	0,1293	641	2096	3062	588	1163	2941	15 3_Wo
5 3_Wo	0,0875	702	1924	2990	536	1142	2891	15 3_Wo
5 13_LwN	0,2258	680	1735	2416	614	1245	2880	15 13_M
513 _WN	0,2089	712	1909	2458	520	1333	2362	15 13_WN
5 16_Lwo	0,1439	666	2034	2841	526	1533	2953	15 16_Lw
5 16_Lwo	0,142	664	2155	3041	528	1391	3052	15 16_Lw
5 9_Lwo	0,208	666	2102	2710	621	1194	2695	15 9_Wo
$59 . W$	0,1961	645	1767	2775	576	1408	2658	15 9_W
5 18_Lw	0,1453	633	2041	2635	489	1491	2786	15 18_Lw
5 18_Lw	0,1377	678	1958	2841	514	1434	2840	15 18_Lw
5 19_Wo	0,1875	693	2065	2883	619	1334	2672	15 19_Wo
5 19_Wo	0,1925	681	1989	2794	607	1451	2673	15 19_W
5 12_Lw	0,1475	606	2124	2229	492	1400	3020	15 12_Lwo
5 12_Lwo	0,1506	665	1814	2409	536	1469	3026	15 12_Lw
56 _WN	0,1677	645	2104	2301	711	1332	2859	15 6_WoN
5 6_WN	0,1931	658	2118	2837	469	1178	2451	15 6_WN
5 5_Wo	,1353	630	2140	2732	620	1225	885	15 5_Wo
5 5_Wo	0,1016	726	1957	3035	585	1073	2849	15 5_Wo
5 21_Lw	0,178	663	2147	3088	532	1347	2836	15 21_W
521 -Wo	0,1776	607	1939	3001	603	1442	2827	15 21_Lwo
5 20_Wo	0,1116	695	1867	2287	495	1208	2570	15 20_Wo
5 20_Wo	0,1043	694	1977	2132	545	1352	2532	15 20_Lwo
5 8_Lw	0,1964	693	1632	2210	542	1496	2842	15 8_Lw
5 8_Lw	0,1747	665	2087	3048	498	1338	279	15 8
6 1_Lwo	0,2653	598	2133	2903	594	1153	2723	16 1_Lwo
6 1_Lw	0,2466	609	2008	2871	510	997	2544	16 1_Lwo
62 _Wo	0,2033	736	2120	3159	586	1132	2742	16 2_Lw
6 2_Wo	0,1941	656	2026	2913	477	1024	2623	16 2_Lwo
6 3_Wo	0,1493	621	1977	2803	599	1166	2551	16 3_NL
6 3_W	0,1235	596	1833	2739	372	1040	2857	16 3_Wo
64 -Wo	0,1879	642	1854	2796	629	1198	2482	16 4_M
6 4_W	0,1952	571	1960	2767	462	1070	2461	16 4_M
6 5_W	0,167	657	2080	2626	419	1000	2561	16 5_Wo
6 5_W	0,1268	575	1048	2512	444	921	2497	16 5_Lwo
6 6_WN	0,163	640	1984	2970	558	911	2510	16 6_LwN
6 6_WN	0,1902	575	1998	3007	421	1001	2437	16 6_LwN
6 7_Wo	0,131	635	1666	2579	554	1023	2514	16 7_Lwo
67 -W	0,1092	440	1477	2628	399	1067	2546	16 7_Lwo
6 8_Lwo	0,2093	711	2131	2975	593	1235	2764	16 8_Lw
6 8_Lw	0,2101	682	2118	2699	478	1227	2536	16 8_Lw
6 9_Lw	0,2984	623	1765	2763	505	1023	2645	16 9_M
6 9_Lw	0,2177	642	2054	2854	444	1046	2519	16 9_M
6 10_NL	0,2727	674	1692	2910	354	1055	2915	16 10_Lw
6 10_Wo	0,1315	607	1813	2880	501	1135	2524	16 10_Lw
611 Lw	0,2153	598	1984	3020	392	1123	2874	16 11_Lw
6 11_Lw	0,2337	659	1994	2987	439	1244	2731	16 11_Lw
6 12_Lw	0,1787	632	1692	2735	474	1317	2750	16 12_Lwo
6 12_Lw	0,1415	650	2005	2602	426	1315	2649	16 12_Lw
6 13_WN	0,1798	780	2185	3092	546	1016	2405	16 13_LwN
613 -WN	0,1835	647	2127	2812	400	1177	2331	16 13_LwN
6 14_WN	0,1711	644	1859	2746	566	1420	2596	16 14_NL
614 -WN	0,1175	347	1183	2476	317	1077	2500	16 14_Lw
6 15_Lw	0,2355	666	2222	3017	507	1204	2915	16 15_Lwo
6 15_W	0,2193	550	1960	2909	468	1223	2615	16 15_Lw
6 16_Lw	0,1343	663	1620	2712	453	1177	2835	16 16_Lwo
6 16_W	0,0935	516	1649	2641	403	1378	2934	16 16_Lwo
6 17_Lw	0,2197	625	2151	3084	502	1073	2715	16 17_Lwo
6 17_W	0,2174	607	2156	3133	436	1135	2730	16 17_M
6 18_Lw	0,1918	613	1250	2620	399	1220	2819	16 18_NL
6 18_W	0,1435	544	1839	2606	379	1222	2628	16 18_Lw
6 19_W	0,2435	570	1938	2756	497	1107	265	16 19_L

	682	213	290	521		
	637	20	287	535		
,225	610	215	2985	53	116	
,213	597	204	291	50	113	
,304	752	215	2902	457	109	
,304	735	223	308	527	27	
	63					
	756	2145	306	463		
,192	629	2044	2932	467	160	
0,215	604	205	288	481	153	
,286	760	220	313	48	128	
, 308	73	226	3191	488	129	
	625	212	302	525	08	
27	778	218	304	629		
2309	575	215	2970	52	140	
,252	608	2116	2926	481	125	
0,290	684	214	2971	584	111	
0,290	700	2010	2956	490	113	
	608	2072	287			
	629	219	306	584		
	606	206	298	548	13	
,251	615	205	287	517	14	
0,227	763	216	3077	756		
273	761	219		674		
209			290	589		
	713					
	610	214	2986	518	11	
,223	575	217	293	516		
	709		316	467		
	662		3191	552		
	613	227	3101			
		218	307	515		
,	643		2133	522		
	653	105	210			
	5	23	291	,		
	425			291		
				532		
	723	217		55		
, 73	652	116	211	658		
,186	59	189	268	62		
0,2	687	147	22	489		
	388			5		
11	662					
	680			402		
	675	203	29	493		
	663	135	256	420		
	647	138	24	485	129	
58	689	210	318	511	126	
	645					
	661					
	574			73		
	687	193	255	489		
,	628	215	300	412	140	
2139	621	114	2243	508	27	
,2176	640	110	2146	518	48	
2308		107	27	527	139	
	69	201	析	587		
,	627	2051	021	483		
	650		2128	450	1	
25	61	2005	2925			

6 19_W	0,219	562	1847	2753	411	1168	2536	16 19_W
6 20_W	0,1665	594	1990	2676	396	1000	2536	16 20_Wo
6 20_W	0,1346	656	1828	2809	380	1171	2546	16 20_Wo
6 21_Lwo	0,2159	654	2223	3093	571	1218	2554	16 21_Lw
6 21_Lwo	0,1962	706	2258	2957	475	1018	2576	16 21_Lw
622 _W	0,1548	546	1665	2653	464	1134	2469	16 22_Lw
622 _W	0,125	489	1608	2335	372	1166	2528	16 22_Lw
6 23_Lw	0,2677	578	2013	2860	367	987	2719	16 23_Wo
6 23_Wo	0,1964	538	1978	2762	426	1276	2496	16 23_Wo
6 24_Lwo	0,1932	659	1823	2883	530	1055	2884	16 24_Lw
6 24_Lw	0,1925	572	2063	2817	394	1181	2568	16 24_Lwo
625 _W	0,1421	541	1724	2693	397	1179	2518	16 25_Wo
625 _W	0,1166	479	1832	2815	421	1234	2418	16 25_Lwo
6 26_Lw	0,2133	598	1794	2811	430	1047	2571	16 26_Lwo
6 26_W	0,2268	327	1784	2880	423	1140	2493	16 26_Lwo
627 -W	0,1475	386	1599	2623	407	1232	2377	16 27_Lw
627 _W	0,128	421	1951	2732	323	1180	2484	16 27_Lw
6 28_Lw	0,2345	604	1602	2645	403	1207	2610	16 28_Lwo
6 28_Lw	0,1932	583	1941	2726	332	1459	2541	16 28_Lw
629 -W	0,1381	408	1678	2580	356	1421	2354	16 29_Lw
629 _W	0,1312	439	1513	2649	393	1335	2436	16 29_Lw
6 30_Lw	0,2454	587	1757	2819	411	1222	2517	16 30_Lw
630 _W	0,2752	580	1841	2740	423	1949	2666	16 30_Lw
6 31_Lw	0,194	599	1589	2649	394	1165	2565	16 31_Lw
631 -W	0,176	358	1707	2485	331	1908	2628	16 31_Lw
6 2_Lwo	0,1822	681	2157	2813	490	1005	2738	16 2_Lwo
62 _Wo	0,1705	278	1556	2734	448	1018	2775	16 2_Lwo
6 1_Lwo	0,259	547	1910	2847	489	1107	2673	16 1_Wo
61 _Wo	0,2148	585	2070	2622	517	1179	2592	16 1_Lwo
6 30_Lw	0,2344	658	1758	2745	422	1372	2536	16 30_Lw
630 -W	0,2567	554	1725	2583	363	2220	2638	16 30_Lw
625 _W	0,123	533	1789	2725	448	1232	2502	16 25_Lwo
6 25_Lw	0,1197	578	1350	2620	427	1147	2552	16 25_Lwo
6 28_Lw	0,1952	615	1476	2513	460	1275	2594	16 28_M
6 28_Lw	0,256	490	1440	2545	408	1073	2545	16 28_M
6 7_WN	0,1046	487	1475	2389	290	1140	2395	16 7_Lw
6 7_WN	0,0955	463	1488	2483	409	1064	2334	16 7_Lwo
6 26_Lw	0,2217	633	1752	2742	437	1018	2739	16 26_Lwo
6 26_Lw	0,2175	650	2071	2845	323	967	2518	16 26_Lwo
6 31_M	0,1591	583	1871	2537	397	1929	2600	16 31_Lw
6 31_Lw	0,1577	369	1815	2722	347	1629	2526	16 31_Lw
624 _W	0,1935	706	1774	2909	450	1098	2613	16 24_M
6 24_Lw	0,2241	642	1728	2850	406	1061	2474	16 24_Lwo
622 _W	0,1645	536	1747	2684	449	1185	2522	16 22_Lwo
622 _W	0,1389	530	1675	2645	436	1107	2432	16 22_Lw
6 23_Lw	0,268	533	1617	2791	477	1123	2670	16 23_Lwo
6 23_Lw	0,2557	595	1913	2767	445	1131	2520	16 23_Lwo
6 27_Lw	0,1547	345	1720	2638	321	1284	2585	16 27_Lw
6 27_Lw	0,1276	425	1640	2547	392	1195	2364	16 27_Wo
6 4_Lw	0,3171	604	1665	2662	415	966	2791	16 4_Lw
64 _Wo	0,175	612	1858	2699	498	985	2491	16 4_Lw
6 10_W	0,1729	438	1391	2565	451	1085	2709	16 10_Lw
$610 _\mathrm{NL}$	0,2837	574	1834	2768	367	988	2840	16 10_Lw
$611 _$Lw	0,2756	641	2136	2887	439	1123	2744	16 11_Lw
6 11_Lwo	0,2889	499	1733	2659	524	1268	2799	16 11_Lw
614 -Wo	0,1386	357	1820	2668	508	1317	2584	16 14_NL
614 -W	0,1408	399	1885	2699	463	1254	2490	16 14_Lw
6 17_M	0,3009	648	2219	3001	397	926	2669	16 17_Lwo
6 17_M	0,176	508	2057	2910	457	1368	2621	16 17_M
6 29_W	0,1626	399	1536	2543	369	1428	2332	16 29_Lwo
6 29_W	0,1568	485	1624	2721	316	1365	2491	16 29_Lw
6 15_Lw	0,2597	628	1955	2611	453	1116	2925	16 15_Lw
615 -W	0,2095	462	1928	2877	535	1347	2693	16 15_Lwo
6 3_W	0,1476	655	1645	2652	380	1011	2621	16 3_Wo
6 3_W	0,0978	458	1620	2687	422	1124	2480	16 3_Lwo
6 13_LwN	0,2695	501	1921	2624	762	1430	3053	16 13_WN
613 _WN	0,1834	646	2034	2755	540	1484	2827	16 13_LwN
6 16_W	0,1316	597	1058	2496	380	1370	2773	16 16_Lwo
6 16_Lw	0,1381	375	1607	2453	334	1345	2672	16 16_Lwo
6 9_Lw	0,2725	638	1869	2891	476	1011	2716	16 9_Lwo
69 -Wo	0,1243	550	1869	2784	558	1491	2494	16 9_Lw
618 _Lw	0,1919	528	1821	2595	364	1344	2814	16 18_Lw
618 _Lw	0,1841	374	1763	2596	350	1379	2843	16 18_Lw
6 19_Wo	0,2663	534	2000	2677	493	1133	2422	16 19_Lwo
6 19_Wo	0,1855	491	1513	2517	406	912	2481	16 19_Lwo
612 _Wo	0,1398	596	1728	2543	468	1435	2663	16 12_Lw

0,1738	585	1971	2916	523	1344	2985
0,1967	649	1271	2218	48	95	3069
0,1519	715	2023	281	45		
0,2365	694	22	30	458	1062	2930
19	698	2099	2919	45	154	2874
0,1863	606	1568	2256	54	1215	2631
0,2114	634	1073	2142	492	1170	2845
2177	623	2198	3035	550	1053	2825
0,1887	616	20	3120	570	1191	2831
0,2336	633	20	24	540	980	3125
,2213	601	1318	2230	513	971	84
0,2032	642	1820	22	54	1124	3113
1735	612	1373	2429	600	1205	80
0,1897	597	131	205	592	1194	2995
1854	689	1662	2730	50	103	9
0,2102	654	17	2512	459	107	3078
0,2143	696	1167	208	484	953	9
66	64	1866	2840	472	1300	
0,1784	62	15	242	513	1182	2957
1897	638	1565	2172	47	1329	89
34	552	1205	223	504	1299	2929
2141	684	1933	3092	44	1305	2986
17	67	1299	209	411	1283	
0,2248	652	1880	279	445	137	2953
1789	613	117	2226	437	1413	74
0,2212	647	196	279	502	1121	3032
1926	656	1520	2656	49	110	86
0,2629	613	1829	2853	49	1030	
0,2579	597	2080	3018	44	1137	3027
226	618	16	2475	455	1278	2972
262	616	13	22	422	1312	66
0,1832	624	12	22	58	1207	3061
0,1823	636	1060	2178	503	100	
0,1556	648	1676	2912	61	2093	51
0,145	571	1451	3007	677	197	02
1945	614	19	2307	55	1063	75
0,1893	632	1838	2770	569	962	22
0,2101	619	77	203	539	10	17
0,1858	652	1384	2203	494	1107	67
0,1785	655	1361	2247	47	14	2958
0,1852	644	1143	2180	44	12	2821
0,258	622	1875	2829	539	102	3155
1901	620	1157	2192	500	1108	2947
0,2055	638	1299	2219	493	123	3047
	630	1805	28		10	2860
2306	61	2166	2322	55	11	23
,1726	616	2082	2848	53	1246	270
2168	655	1763	2455	45	1066	析
0,2029	631	1482	2791	521	919	3091
,2577	651	2019	29	501	1180	017
205	620	1998	2881	49	124	251
	65	2063	3054		1110	3039
218	682	65	2046	458	127	2519
	678	1854	2827	46	1430	2962
仡	748	20	3038	46	145	010
0,166	631	1284	2320	565	1089	2895
,2047	612	1129	2228	609	1704	3189
0,2207	648	1873	2890	535	1329	3109
0,2139	592	2283	3191	53	1460	3020
0,1776	632	1576	2251	488	141	2903
0,1913	628	1507	2259	467	132	2906
,2547	665	2005	2936	478	1346	3169
0,2467	658	1991	2992	48	1357	3091
0,1731	627	1674	2362	45	1014	2854
0,1475	632	1245	2428	512	108	3007
0,2495	626	1920	2929	550	1435	2749
0,2273	767	2188	3059	567	1499	3023
0,1807	554	1127	2441	51	1414	3162
0,1761	621	1370	2210	529	1435	3081
0,2519	622	1740	2515	545	1112	2931
0,1809	628	1273	2068	525	1352	2971
0,2494	633	1273	2192	444	1181	3112
0,2103	623	1446	2700	464	1291	3074
0,2643	600	2127	2952	510	1118	2867
0,2068	596	1940	2858	631	1199	3062
0,1761	662	1602	2098	426	1151	3086

	1285	527	1639	2632	424	1486	2850	1612
66 WN	0,1793	720	1972	2861	585	1116		166
6 6_M	0,149	538	2014	2768	246	1260	25	166
-w	0,1351	455	1644	2556	437	997	2428	
65 M	0,0596	566	1783	2873	502	1736	99	165
621 Lwo	0,2157	613	1874	2786	546	1229		16
621 Lw	0,2485	583	2093	2757	466	1123	2474	162
6 20_W	0,1263	577	1457	2612	396	1129	2513	
620 W	0,1213	451	1412	2449	421	1363	2454	1620
6 8_Lw	0,2421	574	2159	2919	430	1109		
68 _Lw	0,1543	647	2059	2975	569	1586	2749	168
71 _Lwo	0,2851	658	2094	3048	662	1337		
71 -L	0,2987	666	2060	3073	703	1301	294	
72 Lwo	0,2137	689	2122	3020	614	1158	2850	172
72 Wo	0,2006	739	1774	2829	566	1270		172
73_L	0,2405	606	1083	2260	506	120		
73 _Lwo	0,2185	699	2214	3087	561	1170	2908	17 3_Wo
7 4_Lwo	0,2446	673	2083	3006	585	1171		17 4_Wo
7 4_Lwo	0,1884	658	2005	2924	599	1283	2909	174
75_L	0,209	699	2096	3072	572	1225	2493	17 5_L
75_L	0,1889	709	2023	3026	483	1155	2942	175
76	0,2461	681	2208	3043	562	1074	28	176
76 Lwo	0,1716	753	2005	3015	619	1174	2794	176
77_Lwo	0,2278	664	1995	2827	646	1234	2807	177
$77 . \mathrm{Lw}$	0,1754	728	1888	2824	483	1143	2606	177.Lw
78_Lw	0,2287	707	2265	3140	564	1272	2805	178
78_Lwo	0,2167		2307					178
$79 . W$	0,2793	687	1996	3101	617	1134	2612	17
79_Lwo	0,2639	647	1197	2461	609	1151	2779	179
710 Lwo	0,2446		2284	3077	540	1110		1710
710 Lwo	0,1989	657	1879	2910	491	1159	28	171
7 11_Lwo	2387	709	2283	3085	597	1176	260	1711
711 Lw	0,2697	701	1673	2572	528	1162	2723	1711
712 L	0,2163	691	2015	2835	546	1143	1636	1712
712 L	0,19	709	2002	2911	508	1241	2906	1712
713 Lwo	0,2795	705	2267	3153	582	1229	2506	17 13_LwN
713 _wn	0,2024	594	1897	2486	583	1070		17 13-WoN
714 _NL	0,2926	672	1809	2919	507	1106	2686	17 14_Lwo
7 14-LwoN	0,1996	642	1352	2539	563	1220	2666	1714
715 Lwo	0,2812	690	2348	3205	544	1171	2829	17 15_Lwo
715 L	0,2353	497	1292	2114	635	1436	2793	17 15_Lwo
716_L	0,2323	665	2102	2843	517	1186	2584	1716
16_L	0,1722	664	2105	3032	479	1305	3025	17 16_Lwo
717 -M	0,2257	672	2295	3151	572	1115	2770	17 17_Lwo
717 M	0,2047	708	1546	2479	652	1449	2924	1717
718 L	0,2631	651	2127	3075	451	1218	2642	1718
718 -NL	0,2945	653	1954	2829	431	1194	2644	1718 -Wo
7 19-Lw	0,2407	568	1592	2723	588	1034	1752	17 19_Wo
7 19-Lwo	0,2331	667	2105	3066	632	1234	2790	1719
720 L	0,3118	664	1249	2295	421	1267	2444	17 20_Wo
720_L	0,2242	644	2103	3013	467	1182	2970	17 20_Wo
721_Lwo	0,2757	688	2271	3132	604	122	2894	1721
721-Lw	0,3366	713	2231	3102	472	1165	2840	17
722 _NL	0,2555	594	2188	3104	567	1198	2840	1722
722_Lw	0,1786	650	1809	2943	484	1217	2875	1722
723_L	0,2789	598	2217	3125	562	1209	2851	1723
723 L	0,3048	596	2124	3081	525	1384	2783	17 23_Wo
724 Lwo	0,267	683	2057	3070	559	1033	2595	1724
$724 . \mathrm{Lwo}$	0,2363	624	2076	3059	577	1179		1724
725 L	0,2131	639	1945	2840	506	1242	2657	17 25-Wo
725_Lw	0,2683	643	2239	3037	505	1185	2228	17 25-Wo
726_Lw	0,3041	642	1699	2749	493	1059	2726	17 26_Lwo
726 Lw	0,3067	684	2036	3080	496	1073	2884	17 26_Lwo
727 L	0,3168	610	1097	2323	472	1193	258	1727
727-L	0,2207	667	2028	2997	509	1260	2894	1727
728 Lw	0,2323	689	1047	2011	568	1154	2772	17 28_Lwo
728_Lw	0,2899	645	2081	2825	466	1204		1728
7 79_Lwo	0,2337	636	1626	2669	553	1201	2569	17 29-Wo
729-Lw	0,2002	675	1939	2828	490	1255	2958	17 29-Lw
730 M	0,3026	698	1480	2555	502	1254	2799	1730
730 M	0,2483	435	1088	2105	609	1264	2756	1730
731 M	0,2827	674	2084	2941	461	1373	3002	1731 -M
731_M	0,2186	578	1184	2394	553	1233	2712	1731_M
7 72_Lwo	0,2639	721	2079	2961	599	1159	2718	172_Wo
${ }_{7} 71$ 2-Wo	0,2092	712	2129	2993	613	1135		

		2243				
	664	185	290	56	1136	
	569	150	2386	522		
0,159	646	15	21	48		
0,235	751	210	301	49	108	
201	783	200	29	406	102	
63	65	139	2038	48		
	603	188	2174	60	139	
0,2659	530	20	280	58	120	
,1932	714	21	299	570	125	
,2132	707	210	29	52	1355	
52	658	210	308	53	122	
,	653	2027	282	540	15	
,2192	665	169	253	53	131	
, 2075	768	21	297	66	118	
205	747	21	289	59	1089	
72	672	222	310	56	1112	
	52	85	221	63		
16	607	214	293	59		
205	659	227	311	55		
172	552	19		48	1281	
	719	22				
0,426	710	22				
		222				
		207				
		212				
	634	22	296	54		
	625	226	30	57		
	642					
	62	22				
	60	17	225			
		213				
		192				
	673	126		52		
	538	167	228			
	628	228	312	49		
71	619	22	303	52		
	628	202				
16		208				
	670	164		515		
	584	22	236	51		
	641	226	312	50		
,	598	222	287	50		
226	605	20		65		
		224				
		,				
		17				
	555	205	305			
33	670	210	318	53	12	
,229	586	218	311	570	118	
0,180	662	217	析	析		
		,				
173	28	198				
71	623	205		475		
245	636	223	311	53	1374	515
2337	636	216	3074	467	1444	260
, 858	627	2073	28	471	1461	2
2055	618	203	,	,	1698	
	4	232	,	579	1352	
	672	1633		5	123	
2304	611	1878	2382			

1＿Lwo	0，2714	664	2057	2896	657	1206	2567	17 1＿Wo
7 30＿M	0，2878	681	1716	2735	561	1113	2234	17 30＿Lwo
7 30＿W	0，3013	564	1460	2438	531	1350	2774	17 30＿Lwo
7 25＿L	0，2795	669	1893	2872	529	1110	1879	17 25＿Wo
$725 . L$	0，2518	650	1263	2459	508	1142	2967	17 25＿Wo
728 －W	0，4195	458	1105	269	596	1952	2857	17 28＿Wo
7 28＿M	0，552	566	1553	2766	389	1743	3196	17 28＿Lwo
7 7＿L	0，2448	638	1529	2551	538	1206	2747	17 7＿Wo
77 7＿Lwo	0，1756	675	2010	3048	585	1210	2690	17 7＿Lwo
7 26＿Lwo	0，2876	656	1910	2960	593	1138	2675	17 26＿Lwo
7 26＿Lw	0，2827	587	951	2117	543	1137	2891	17 26＿Lwo
731 L	0，2806	637	2170	3177	590	1192	2659	17 31＿W
731 L	0，2922	689	2098	2977	476	1516	2927	17 31＿W
7 24＿Lwo	0，2809	592	2106	3012	613	1162	2724	17 24＿Lw
7 24＿Lwo	0，2478	540	1278	2195	614	1099	2803	17 24＿Wo
7 22＿L	0，258	624	2200	3020	468	1210	2771	17 22＿NL
7 22＿Lw	0，2118	681	1946	2957	479	1242	2817	17 22＿Lw
7 23＿Wo	0，347	642	2161	3110	530	998	2627	17 23＿Wo
7 23＿Wo	0，2094	603	2075	2993	667	1207	2742	17 23＿Wo
7 27＿L	0，2494	631	2166	2996	501	1283	2975	17 27＿Wo
7 27＿Lw	0，2198	629	1894	2714	436	1413	2820	17 27＿Wo
7 4＿Lw	0，2698	715	2365	2902	501	1094	2653	17 4＿Lwo
7 4＿Lwo	0，2793	658	2082	2966	609	1258	2846	17 4＿Lw
7 10＿Lw	0，2843	637	1809	2766	515	1159	2743	17 10＿Wo
7 10＿Lwo	0，2043	751	1776	2910	511	1350	2948	17 10＿Wo
7 11＿Lw	0，3089	712	2193	3073	507	1041	2713	17 11＿Lwo
$711 _$Lw	0，2659	611	2367	3048	534	1177	2838	17 11＿Lwo
7 14＿LwN	0，2748	719	2238	2990	517	957	268	17 14＿Wo
7 14＿Lw	0，2334	691	1778	2787	555	1149	2652	17 14＿Wo
7 17＿L	0，3048	569	1580	2760	538	1222	289	17 17＿Lwo
7 17＿L	0，3416	704	2071	3114	513	1258	2980	17 17＿M
7 29＿Lwo	0，2428	588	2110	3004	573	1139	2831	17 29＿NL
7 29＿Lw	0，2	674	1895	2898	458	1226	2710	17 29＿Lw
7 15＿L	0，2691	712	2288	3073	608	1105	2580	17 15＿Lwo
7 15＿L	0，2785	587	2160	3104	514	1127	2821	17 15＿Lwo
7 3＿L	0，2525	679	1886	2841	473	1227	2563	17 3＿Wo
7 3＿L	0，1943	696	1900	2987	462	1291	3010	17 3＿Wo
7 13＿WoN	0，248	689	2330	3153	670	1109	2403	17 13＿LwN
7 13＿WoN	0，2426	557	2270	3068	588	1029	2607	17 13＿WoN
7 16＿L	0，2389	707	2079	2955	496	1130	2848	17 16＿Lwo
7 16＿Lwo	0，2057	698	1886	2846	485	1125	2905	17 16＿Lwo
7 9＿Lwo	0，3417	678	2060	3069	569	1128	2717	17 9＿Wo
7 9＿Lwo	0，3128	635	2030	2976	578	1160	2810	17 9＿Wo
7 18＿Lwo	0，2506	710	1825	2786	498	1180	2929	17 18＿Wo
7 18＿Lw	0，2807	670	2059	3059	481	1148	2909	17 18＿Lw
7 19＿Wo	0，2597	609	1862	2849	583	1103	2485	17 19＿Wo
7 19＿Wo	0，319	488	1738	2519	496	1099	2860	17 19＿Wo
7 12＿Lwo	0，2675	703	1954	2886	540	1152	2851	17 12＿Lwo
7 12＿Lw	0，2008	678	1879	2908	470	1136	2826	17 12＿Lwo
76 ＿WoN	0，2183	711	2083	2778	601	1016	1962	17 6＿W
7 6＿LwoN	0，2585	501	1207	2270	538	1062	2761	17 6＿Wo
7 5＿Lwo	0，2409	712	2043	2959	536	1003	2758	17 5＿Wo
7 5＿Lwo	0，1732	660	1969	2860	497	1183	2760	17 5＿Wo
7 21＿M	0，3797	627	1308	2509	554	1232	2849	17 21＿Wo
721 －M	0，2896	647	1324	2590	606	1203	2831	17 21＿Lw
7 20＿Lw	0，2426	680	1977	3033	475	1333	2880	17 20＿Wo
7 20＿Lw	0，1937	709	1807	2850	439	1167	2846	17 20＿Wo
7 8＿Lwo	0，2686	660	2095	3112	556	1096	2533	17 8＿Lwo
7 8＿Lwo	0，3056	690	2167	2958	494	1079	280	17 8＿Lwo
8 1＿Lwo	0，2716	612	2133	2841	579	979	3013	18 1＿Wo
8 1＿L	0，26	609	2115	2826	561	948	2933	18 1＿Wo
8 2＿Lwo	0，1937	811	1985	2805	529	908	293	18 2＿Wo
82 ＿Wo	0，1579	825	2009	2887	560	1097	2998	18 2＿Wo
83 －W	0，1571	613	2171	2931	466	929	2781	18 3＿Lwo
8 3＿Wo	0，1341	657	2052	2844	506	888	2695	18 3＿Wo
8 4＿M	0，1939	715	1866	2724	645	1066	2995	18 4＿M
8 4＿Lw	0，2387	726	1903	2681	474	970	2507	18 4＿M
8 5＿Wo	0，1674	679	2016	2804	545	947	2863	18 5＿Wo
8 5＿Lwo	0，1425	693	1825	2614	581	938	2852	18 5＿Wo
8 6＿WN	0，2134	789	1774	2741	545	918	2988	18 6＿WoN
8 6＿WN	0，2133	725	1723	2685	539	1056	2757	18 6＿WN
8 7＿Wo	0，177	772	2191	2976	566	1007	3045	18 7＿Lwo
8 7＿Wo	0，1437	717	2035	2619	560	1019	2906	18 7＿Wo
8 8＿L	0，2182	780	2163	2732	724	1223	2946	18 8＿Lwo
8 8＿L	0，2409	764	2103	2776	628	1085	2945	18 8＿Lwo
8 9＿Lwo	0，2665	656	207	282	578	989	2994	18 9＿L

8 9＿Lwo $\quad 0,2665 \quad 656 \quad 2078 \quad 2825 \quad 578$

	522	2167	2271	615	144	2513
	657	2134	31	557		
0，2077	606	2218	3064	503		
	633	21				
527	614	217	308			
		1997	2798	52		2620
0，189	649	2146	2836			2682
0，1717	656	20	3008	54		
1717	580	2196	3079	47		561
63	621	1697	232			
0，2461	590	1762	2285	33		534
0，174	635	2165	3125	47		
		1448				
0，1875	633	1911	2924	59	129	2627
		224	304			
0，2785	641	23	3032	492	1123	2672
568	582	2094	30			
0，2178	620	2195	3044	00		556
0，25	565	2245	32			2677
		20				
0，1559	59	2099	3091		1076	2667
		1859				
	624	2178	2995	49		2586
0，156		220	298			
		2023	2995			
0，2255	69	2303	306		154	
	659	22	3045			
	652	2243				
		2029				
	658	1756	269			
	585	2085	288	52	129	
	653	195	31			
	565	2043	29		160	
	630	205	23	27		
	522					
	645	218	31		120	
		203	3044			
77	650	2109	27	61		
		2273	301	56		
		2053	292			
	600	195	29			
		21	2748		1078	
	625	21				
	605	2152	310			
	86	2120	228			
		2171	279			
	654	218	307	53		
	690	22	29		15	2697
	764					
					04	
0，1339	析	2109	299			
		887				
	590	225	306		11	
		2030				2419
		2034	3106			2756
	635	2064			1	2
	563	1923			165	
	462	1760	仡		104	
629	459	523	22	56		仡
	64	1512	2247	49		
，1569	568	，	888	508		
，	484	1814	2542	473		
	473	17	249	425		2515
	269	1766	2577	34		
	303	1718	2100	31		
	540	1472	2417	450		2556
，	520	1677	2457	47		
049	634	1592	226	706		243
1927	589	1513	229	13	969	2406
， 2458	502	1742	2236	466	836	2460
1606	496	1682	2445	463	908	24
2703	530	1907	2217	490	776	2493
556	571	1469	2224	538	1028	2475
215	505	1714	2425	560		

8 9_Lwo	0,2654	690	2054	2760	498	964	2953	18 9_Wo
8 10_Lw	0,1771	686	2035	2705	485	1064	2965	18 10_Lw
8 10_Lw	0,1475	681	1885	2685	433	1148	2970	18 10_Lwo
8 11_Lwo	0,1917	864	1925	2896	554	1109	3100	18 11_Lwo
8 11_Lwo	0,2403	823	1852	2755	499	1409	3022	18 11_Wo
8 12_Lwo	0,1647	675	2026	2832	504	1110	2995	18 12_Lwo
8 12_Lwo	0,1475	686	1948	2815	557	1201	2928	18 12_Lw
8 13_LwoN	0,2309	765	2032	2794	603	1117	2966	18 13_WoN
8 13_LwoN	0,2295	770	2068	2756	674	1101	2881	18 13_WoN
8 14_NL	0,2863	719	1916	2668	433	1039	3055	18 14_Wo
8 14_LwN	0,1608	713	2083	2697	593	1008	2909	18 14_Lwo
8 15_Lwo	0,2559	760	2172	2636	520	1058	3041	18 15_Lw
8 15_Lwo	0,2845	773	2167	2816	621	1193	2946	18 15_Lwo
8 16_Lwo	0,1562	683	1983	2803	511	878	2982	18 16_Lw
8 16_Lwo	0,1641	626	2090	2866	519	1142	3047	18 16_Lwo
8 17_Lwo	0,2868	818	1893	2773	521	1034	3264	18 17_M
8 17_Lw	0,2911	768	2079	2662	519	993	2887	18 17_M
8 18_Lw	0,1733	695	1967	2846	475	1165	2999	18 18_Lw
8 18_Lw	0,1726	651	2021	2812	476	1233	3038	18 18_Lw
8 19_Lwo	0,2714	751	1967	2894	541	1033	3048	18 19_Wo
8 19_Wo	0,2385	673	2065	2857	563	1089	2864	18 19_Wo
8 20_Lwo	0,1474	711	1962	2816	579	1110	2937	18 20_Wo
8 20_Lwo	0,1557	756	2013	2726	501	1083	2845	18 20_W
8 21_Lwo	0,2283	814	1824	2809	635	1046	2967	18 21_Lw
8 21_Lwo	0,2472	800	1967	2732	651	1061	2882	18 21_W
8 22_Lw	0,1662	692	1960	2841	479	1113	2792	18 22_NL
8 22_Lw	0,1722	763	2092	2659	481	1209	2804	18 22_W
8 23_Lwo	0,288	725	1832	2793	619	1042	3021	18 23_Lwo
8 23_Lw	0,2684	710	2122	2755	556	1014	2885	18 23_Wo
8 24_Lwo	0,2621	773	1892	2765	648	1062	2828	18 24_W
8 24_Lwo	0,2595	753	1953	2801	654	1092	2517	18 24_M
8 25_NL	0,1878	654	1963	2889	579	1062	2728	18 25_Lw
8 25_Lwo	0,1456	662	1890	2994	604	1126	2819	18 25_Wo
8 26_Lwo	0,2834	752	1856	2761	525	1022	2950	18 26_Lwo
8 26_Lw	0,2921	775	1933	2713	496	985	2763	18 26_Lwo
8 27_Lw	0,2011	684	1939	2654	498	1100	2822	18 27_Lw
8 27_Lw	0,1899	692	1987	2667	482	1008	2809	18 27_W
8 28_L	0,2308	775	1705	2424	705	1169	3076	18 28_W
8 28_Lwo	0,2544	757	1640	2796	571	1162	2887	18 28_Wo
8 29_Lwo	0,1741	652	1958	2789	512	1266	2879	18 29_W
8 29_Lwo	0,1629	677	2082	2689	545	1191	2735	18 29_W
8 30_Lwo	0,263	741	1747	2785	505	1125	3082	18 30_M
8 30_Lw	0,2541	749	1910	2846	519	1145	3091	18 30_Wo
8 31_Lw	0,1767	645	2051	2758	492	1270	2957	18 31_M
8 31_Lw	0,179	724	2014	2961	471	1310	3172	18 31_M
82 _Wo	0,1973	856	1859	2919	578	986	2980	18 2_Wo
8 2_Lwo	0,2416	807	1960	2745	638	1049	2917	18 2_W
8 1_Lwo	0,2917	650	2001	2925	648	1057	2976	18 1_Wo
8 1_Lwo	0,3247	652	1903	2841	534	999	2943	18 1_Wo
8 30_Lw	0,2703	681	1974	2930	523	1135	3087	18 30_Lwo
8 30_Lwo	0,29	687	2029	2906	528	1165	2872	18 30_Wo
8 25_Wo	0,1657	705	1985	2732	546	1047	2852	18 25_Wo
8 25_Wo	0,161	680	1969	2860	555	939	2923	18 25_Wo
8 28_Lwo	0,2163	753	1748	2575	560	1300	3010	18 28_Lw
8 28_Lw	0,2837	675	1627	2767	514	1057	3015	18 28_Wo
8 7_Lwo	0,1635	627	2049	3027	588	1188	2989	18 7_Wo
8 7_Lwo	0,1476	686	1973	2508	600	1078	2907	18 7_Wo
8 26_Lwo	0,2567	773	1898	2915	616	1086	3015	18 26_Lwo
8 26_Lw	0,2957	775	2008	2875	492	1089	2921	18 26_M
8 31_Lw	0,1679	686	1986	2846	447	1364	2907	18 31_M
8 31_Lw	0,1686	666	2060	2935	418	1204	2811	18 31_W
8 24_M	0,256	768	1914	2960	530	1036	3000	18 24_Lwo
8 24_Lwo	0,2764	786	1911	2919	554	983	2983	18 24_Wo
8 22_Lw	0,1635	691	1942	2868	465	1217	2763	18 22_W
8 22_Lwo	0,1511	677	1946	2862	521	1269	2817	18 22_W
8 23_Lwo	0,265	740	1891	2902	528	923	3189	18 23_Wo
8 23_Lwo	0,2447	669	2046	2787	493	942	2804	18 23_Wo
8 27_Lwo	0,1786	674	1947	2945	483	1074	3008	18 27_W
8 27_Wo	0,1844	643	2120	2889	472	1020	2773	18 27_Lw
8 4_M	0,2296	699	1823	2738	569	1028	2963	18 4_Lwo
8 4_M	0,2056	695	1821	2747	562	1098	2882	18 4_Lw
8 10_Lw	0,1672	688	1983	2820	463	1185	3058	18 10_Lw
8 10_Lw	0,1482	657	1780	2835	490	1211	2925	18 10_W
8 11_Lw	0,24	771	2047	2782	535	1129	3166	18 11_Lw
8 11_Lwo	0,2642	728	1992	2793	459	1134	3048	18 11_Lwo
8 14_Lw	0,2034	699	2058	2913	498	1118	3061	18 14_W

	493					
0,2348	519	173	2205	350	81	
0,147	523	146	2376	44	85	
, 66	590	167	22	478	52	
178	588	182	2381	542	101	
	488	178		47		
,213	590	145	216	60		
0,204	463	183	255	620		
,184	507	1653	25	48		
35	532	195	210	45		
, 44	44	174	26	496	31	
	512	168	227	50	090	
,152	520	175	224	55		416
	49	168	242	429	1040	26
, 190	496	155	26	43	1157	275
208	518	17	223	510		
0,15	509	160	2303	52	61	21
206	431	1630	257	45		
				45		
	551	173	234	43		
, 797	487	180	19	44		
,150	495	169	22	43		
215	472	17	204	535	79	
, 45	537	141	216	592	1212	
65		135	236	445		
				493		
	471	173		41		
	491	164	23	45		
252	530	163	248	466		
	505	166	25	47		
	525	161	220	37		
	497	141	238	39		
	650	13	232	410		
		135				
		165		43		
	495	163	224	401	105	
	570	163	22	35		
	509	172	227	49		
, 45		176	20	381		
		1432	226	321		
	61	137	208	43		
		1776				
	541	1568	232	557		
	530	161	234	414	108	
,	533	154	243	379		
	485	176	262	458		
	49	150	252		1010	
	527					
	95	1745				
	513	50	227	483		
	565	162	240	451		
09	575	141	242	48		
	58	149	229	319	83	
	53	147	236	323	1373	
	523	,	247			
	516	1562				
	472		,	422		
	,	1474	239		1055	
	556	159	223	556		
,142	497	164	213	618	1062	
0,193	557	165	2299	378		
563	502	181	2310	359	820	
516	884	1686	2194	480		
	550	寺	研	426		
191	565	579	2223	404	915	
	527	1383	2346	428	1033	
688	583	1709	2346	402	979	255
	596	1750	2372	512	961	
,1891	51	16	2210			

8 14_Lwo	0,164	698	1774	2842	605	1182	2814	18 14_M
8 17_Lwo	0,262	730	1638	2521	576	1120	3031	18 17_M
8 17_Lwo	0,2616	752	1993	3130	629	1185	2966	18 17_M
8 29_Lwo	0,135	665	1776	2665	504	1307	2848	18 29_W
8 29_Lw	0,1716	659	1961	2817	500	1204	2912	18 29_W
8 15_Lwo	0,2345	696	2282	2716	627	1079	2965	18 15_Lw
8 15_Lwo	0,2265	758	1836	2792	561	993	2976	18 15_Wo
8 3_Wo	0,1314	653	2068	2950	525	1050	2782	18 3_NL
83 3-Wo	0,1396	688	2058	2876	528	998	2822	18 3_Wo
8 13_WN	0,222	739	2083	2821	637	1056	2977	18 13_WoN
8 13_WN	0,2281	714	1909	2694	665	1105	2894	18 13_WN
8 16_Lwo	0,1712	728	1780	2858	510	1058	3047	18 16_M
8 16_Lw	0,157	650	1914	2828	485	1176	2958	18 16_W
8 9_Lwo	0,3096	761	1895	2773	555	1040	2993	18 9_Lwo
8 9_Lw	0,2924	790	2121	2758	427	864	2920	18 9_Wo
8 18_Lwo	0,2028	705	1907	2702	489	1145	3042	18 18_Lw
8 18_Lwo	0,1622	642	1868	2925	525	1194	2924	18 18_M
8 19_Lwo	0,2525	753	1989	2798	559	1057	2994	18 19_Wo
8 19_Lwo	0,249	671	1875	2809	615	1074	2857	18 19_Wo
8 12_Lwo	0,1592	658	2046	2850	536	1291	2845	18 12_Lwo
8 12_Lwo	0,181	676	1967	2859	553	1200	3096	18 12_Wo
8 6_WoN	0,1956	729	1742	2789	616	996	2966	18 6_WN
86 -WoN	0,1859	766	1752	2750	590	981	2998	18 6_WoN
8 5_Wo	0,1363	731	1843	2942	593	1032	3025	18 5_W
8 5_Wo	0,1559	727	1842	2827	628	1108	2954	18 5_W
8 21_Lwo	0,2571	716	1978	2745	563	974	3060	18 21_Lwo
8 21_Lwo	0,2644	772	1983	2730	572	1078	2953	18 21_Lw
8 20_Lwo	0,1614	689	1900	2958	548	1095	2903	18 20_W
8 20_Wo	0,1826	640	1967	2763	501	1012	2858	18 20_Wo
8 8_Lwo	0,2536	687	2172	2804	604	1003	3077	18 8_Lwo
8 8_Lwo	0,2818	684	2164	2737	542	1015	2963	18 8_Lwo
9 1_Lwo	0,3426	621	2129	2377	679	1072	2462	19 1_Lwo
9 1_Lwo	0,3986	623	2266	3133	656	1046	2303	19 1_Lwo
9 2_Lwo	0,29	801	1873	2813	624	1026	2992	19 2_Wo
92 _Lwo	0,2927	862	2001	2932	541	951	2429	19 2_Wo
9 3_Lwo	0,1924	603	1861	2273	644	1077	3096	19 3_Wo
9 3_Lwo	0,2153	718	2105	3175	607	1003	3013	19 3_Wo
9 4_Lwo	0,2904	635	1943	2786	641	1126	2818	19 4_Wo
9 4_Lwo	0,2983	712	2144	3063	616	1057	2939	19 4_Lwo
9 5_Lwo	0,2288	643	1829	2241	635	1041	2893	19 5_Wo
9 5_Lwo	0,1939	671	1910	2781	619	1022	3046	19 5_W
96 -WoN	0,2184	776	1157	2051	893	1300	2954	19 6_WoN
96 -WoN	0,2709	863	1691	2692	831	1264	2498	19 6_WoN
9 7_Lwo	0,1847	690	1670	2503	641	1123	3074	19 7_Lwo
97 7-M	0,1993	790	2064	2986	400	1656	2372	19 7_Lwo
98 8_Lwo	0,2818	672	1974	2654	585	1243	3075	19 8_Lwo
9 8_Lwo	0,3399	664	2158	3043	556	1203	2940	19 8_Lwo
9 9_Lwo	0,3555	632	1819	2388	654	1094	3005	19 9_Wo
9 9_Lwo	0,3432	604	1893	2339	613	1138	2926	19 9_Lwo
9 10_Lwo	0,2057	592	1931	2780	547	1243	2847	19 10_Wo
9 10_Lwo	0,1991	640	2117	3226	651	1133	2869	19 10_Lw
9 11_Lwo	0,3081	812	1977	2961	611	1247	2910	19 11_Lwo
9 11_Lwo	0,294	740	1774	2672	646	1181	2667	19 11_Lw
9 12_Lwo	0,2388	642	1931	2225	605	1328	3233	19 12_Lwo
9 12_Lwo	0,2816	607	2027	2909	630	1244	2906	19 12_Lw
9 13_WoN	0,3035	737	2078	2876	791	1061	2482	19 13_LwN
9 13_WoN	0,3066	610	1708	2751	665	1099	2354	19 13_WN
9 14_LwoN	0,3009	612	1720	2350	428	1462	2245	19 14_LwN
9 14_Lwo	0,2546	552	1999	2762	608	1121	2756	19 14_Lw
9 15_Lwo	0,3401	652	1323	2600	606	1101	2955	19 15_Lwo
9 15_Lwo	0,407	656	1021	2537	548	1119	2816	19 15_Lwo
9 16_Lwo	0,1915	531	1251	2302	611	1324	2684	19 16_Wo
9 16_Lwo	0,1822	595	1620	2425	600	1204	2650	19 16_Wo
9 17_Lwo	0,2997	634	1904	2505	642	1256	2811	19 17_M
9 17_M	0,3688	659	1535	2513	618	1133	2946	19 17_M
9 18_Lwo	0,1917	598	2141	2678	583	1216	3039	19 18_Lw
9 18_Lwo	0,2173	673	2117	3029	539	1277	2973	19 18_Lw
9 19_Wo	0,2844	668	2229	2516	603	1080	2694	19 19_Wo
9 19_Lwo	0,3054	648	1837	2315	557	1063	2943	19 19_Lwo
9 20_Lwo	0,1683	573	1900	3073	576	1186	2805	19 20_Wo
9 20_Lwo	0,1696	621	1620	2398	599	1234	2937	19 20_Wo
9 21_Wo	0,2674	754	2318	3046	624	1090	3029	19 21_Lwo
9 21_Lwo	0,3364	741	2306	3284	562	1085	2831	19 21_Lwo
9 22_Lw	0,1742	653	2046	2999	553	1180	2843	19 22_Lw
9 22_Lwo	0,2009	580	1762	2865	511	1072	2944	19 22_Lwo
9 23_Wo	0,3261	721	2091	2866	667	1056	2772	19 23_Lwo

9 23_Lwo	0,3661	740	1980	2607	626	1013	2360	19 23_Lwo
9 24_Lwo	0,3084	732	1774	2166	612	1039	2856	19 24_Lwo
9 24_Lwo	0,29	704	1833	2488	602	1034	2960	19 24_Lwo
9 25_Wo	0,1949	665	1824	2504	667	1148	3024	19 25_Wo
9 25_Lwo	0,2039	647	1658	2671	615	1100	3090	19 25_W
9 26_Lwo	0,3198	707	1793	2251	642	1013	2940	19 26_M
9 26_Lwo	0,342	720	1753	2214	621	1085	2910	19 26_Lw
9 27_Lw	0,2819	695	1717	2248	508	1017	2835	19 27_Lw
9 27_Lwo	0,2504	702	1600	2168	633	1091	2999	19 27_Lw
9 28_Lwo	0,3233	756	1828	2950	592	1066	2679	19 28_Lw
9 28_Lwo	0,2705	807	1846	2035	598	1004	2428	19 28_M
9 29_Lwo	0,1955	568	1674	2200	596	1144	2696	19 29_W
9 29_Lwo	0,1585	645	1959	3155	537	1370	3188	19 29_Wo
930 -M	0,2748	686	2206	3284	595	1260	2876	19 30_Lwo
930 -M	0,2787	731	1874	2866	554	1259	3084	19 30_Lwo
9 31_Lwo	0,2622	656	2080	3042	545	1212	2939	19 31_M
9 31_Lwo	0,2553	673	2272	3193	537	1296	2838	19 31_W
9 2_Lwo	0,2565	816	1827	2547	616	1061	2665	19 2_Wo
9 2_Lwo	0,2603	807	1862	2815	579	1059	2567	19 2_Wo
9 1_Lwo	0,3073	574	1758	2648	652	1233	2869	19 1_Lw
9 1_Lwo	0,3406	609	1695	2344	617	1109	2588	19 1_Lwo
9 30_M	0,2692	689	1733	2224	518	1355	2771	19 30_Lw
9 30_M	0,2934	668	1486	2236	521	1240	2689	19 30_M
9 25_Lwo	0,1859	550	1778	2792	593	1123	2834	19 25_Wo
9 25_Lwo	0,1869	622	1830	2992	561	1202	3035	19 25_Wo
9 28_Lwo	0,2738	694	1803	2887	576	1120	3017	19 28_Lwo
9 28_Lwo	0,2914	700	1898	2567	577	1202	2906	19 28_Lw
97 _Lw	0,1746	592	2039	2564	529	1093	2809	19 7_WoN
97 7_Lwo	0,185	600	1631	2232	716	1243	2944	19 7_Lwo
9 26_Lwo	0,279	684	1536	2712	669	1193	2849	19 26_Lwo
9 26_Lwo	0,313	689	1539	2328	633	1140	2759	19 26_Lwo
9 31_Lw	0,2468	624	1980	2240	516	1435	2760	19 31_M
9 31_Lwo	0,2667	600	2141	2819	562	1425	2885	19 31_M
9 24_Wo	0,2919	637	1830	2494	616	1053	2765	19 24_Lwo
9 24_Wo	0,2886	659	1645	2466	582	1047	2860	19 24_Lwo
9 22_Lw	0,1985	579	1976	2632	534	1204	2944	19 22_Wo
9 22_Lwo	0,2135	668	1761	2417	577	1083	2804	19 22_Wo
9 23_Wo	0,3106	693	1896	2806	624	1086	2859	19 23_Wo
9 23_Lwo	0,3443	671	1948	2732	685	1213	2641	19 23_Wo
9 27_Lwo	0,2148	605	1800	2448	602	1179	3136	19 27_Lw
9 27_Lwo	0,2298	641	1734	2043	604	1073	2821	19 27_W
9 4_Lwo	0,3654	714	1770	2641	609	1065	2630	19 4_Lwo
9 4_Lwo	0,3377	692	1816	2317	634	1159	2743	19 4_Lwo
9 10_Lwo	0,1742	582	2051	3251	615	1198	3038	19 10_Lwo
9 10_Wo	0,1624	738	1791	2500	636	1145	2564	19 10_Lw
9 11_Lwo	0,3158	733	1308	2396	590	1201	2916	19 11_Lwo
9 11_Lwo	0,3361	841	1622	2640	583	1252	3037	19 11_Lwo
9 14_LwN	0,183	615	1873	2292	689	1360	3076	19 14_LwoN
9 14_WoN	0,222	602	1780	2292	590	1206	2844	19 14_LwoN
9 17_M	0,3748	605	1915	2995	598	1122	2834	19 17_Lwo
9 17_M	0,4187	645	1705	2896	583	1229	2750	19 17_M
9 29_Wo	0,1949	587	2204	2854	593	1348	2937	19 29_FT
9 29_Lwo	0,1814	595	1917	2478	542	1477	2960	19 29_TF
9 15_Lwo	0,3477	667	2184	2424	555	1170	2757	19 15_Lwo
9 15_Lwo	0,3536	672	1768	2744	580	1221	2918	19 15_Lw
93 _Wo	0,1688	609	1970	2533	610	1178	2797	19 3_Wo
9 3_Lw	0,2811	632	1940	2998	547	1000	2804	19 3_W
9 13_WN	0,2433	903	1633	1878	715	902	2301	19 13_LwN
9 13_WoN	0,2502	832	1610	2419	846	1037	2473	19 13_LwN
9 16_Lwo	0,1902	537	1634	2439	634	1265	2867	19 16_Wo
9 16_Lwo	0,2298	632	2007	2487	607	1411	2954	19 16_Lw
9 9_Lwo	0,3392	666	2127	2887	696	1121	2565	19 9_Wo
9 9_Lwo	0,3869	674	1643	2272	619	1117	2705	19 9_Lwo
9 18_Lwo	0,2549	573	1961	2110	576	1074	2666	19 18_Lw
9 18_Lwo	0,2092	607	2026	2647	599	1251	2919	19 18_Lw
9 19_Lwo	0,2893	527	2064	2654	628	1142	3000	19 19_Wo
9 19-Lwo	0,2983	647	2072	3043	642	1129	2638	19 19_Lw
9 12_Lwo	0,2367	603	2067	3214	566	1288	2893	19 12_Lw
9 12_Lwo	0,2609	563	2052	2694	546	1175	2803	19 12_Lwo
9 6_WoN	0,2938	696	1534	2400	873	1244	2772	19 6_WN
9 6_WoN	0,2107	688	1875	2270	890	1340	2925	19 6_LwN
9 5_Lwo	0,2257	599	1492	2261	606	1046	3071	19 5_Wo
9 5_Lwo	0,189	640	1803	2357	625	959	2924	19 5_W
9 21_Lwo	0,33	665	2192	2680	574	1101	2919	19 21_Lwo
9 21_L	0,3333	651	2238	3175	541	1003	2828	19 21_Lw
9 20_Lwo	0,1774	577	1635	1937	618	1110	3053	19 20_W

$\begin{array}{lllllll}0,2938 & 610 & 2142 & 3380 & 402 & 1104 & 2436\end{array}$ $\begin{array}{lllllll}0,2401 & 650 & 1609 & 2882 & 593 & 1065 & 2972\end{array}$ $\begin{array}{lllllll}0,2543 & 626 & 1943 & 2988 & 468 & 1083 & 2924\end{array}$ $\begin{array}{lllllll}0,1139 & 642 & 1911 & 3235 & 645 & 1134 & 2850\end{array}$ $\begin{array}{lllllll}0,0905 & 565 & 1801 & 3020 & 578 & 1153 & 2835\end{array}$ $\begin{array}{lllllll}0,2322 & 634 & 2250 & 3461 & 628 & 1185 & 2730\end{array}$ $\begin{array}{lllllll}0,2297 & 615 & 1981 & 3355 & 523 & 1021 & 2846\end{array}$ $\begin{array}{lllllll}0,1718 & 587 & 1952 & 3138 & 449 & 1303 & 2706\end{array}$ $\begin{array}{lllllll}0,1526 & 673 & 1911 & 3137 & 418 & 1214 & 2787\end{array}$ $\begin{array}{lllllll}0,2544 & 676 & 1829 & 2252 & 561 & 1122 & 2711\end{array}$ $\begin{array}{lllllll}0,2444 & 595 & 1819 & 3179 & 477 & 1193 & 2687\end{array}$ $\begin{array}{lllllll}0,0995 & 668 & 1927 & 3187 & 501 & 1563 & 3051\end{array}$ $\begin{array}{lllllll}0,0981 & 646 & 1923 & 3081 & 459 & 1357 & 2839\end{array}$ $\begin{array}{llllllll}0,2471 & 648 & 1873 & 3310 & 526 & 1295 & 2617\end{array}$ $\begin{array}{lllllll}0,234 & 593 & 1956 & 3174 & 498 & 1353 & 2744\end{array}$ $\begin{array}{lllllll}0,1642 & 591 & 1861 & 3082 & 431 & 1873 & 2866\end{array}$ $\begin{array}{lllllll}0,1048 & 499 & 1787 & 2976 & 422 & 1889 & 2884\end{array}$ $\begin{array}{lllllll}0,209 & 634 & 2110 & 2735 & 602 & 1066 & 2862\end{array}$ $\begin{array}{lllllll}0,2471 & 628 & 2289 & 3429 & 475 & 1029 & 2923\end{array}$ $\begin{array}{lllllll}0,2742 & 621 & 2079 & 3193 & 592 & 1127 & 3057\end{array}$ $\begin{array}{lllllll}0,2848 & 606 & 2101 & 3243 & 430 & 1224 & 3034\end{array}$ $\begin{array}{lllllll}0,2299 & 653 & 2034 & 3439 & 539 & 1388 & 2718\end{array}$ $\begin{array}{lllllll}0,2077 & 707 & 1359 & 2232 & 456 & 1069 & 2796\end{array}$ $\begin{array}{lllllll}0,1137 & 671 & 2043 & 3281 & 587 & 1142 & 2858\end{array}$ $\begin{array}{lllllll}0,1026 & 705 & 1877 & 3190 & 571 & 1174 & 2878\end{array}$ $\begin{array}{lllllll}0,2195 & 679 & 1862 & 2734 & 597 & 1394 & 2755\end{array}$ $\begin{array}{lllllll}0,2674 & 621 & 1993 & 2936 & 448 & 1201 & 2670\end{array}$ $\begin{array}{lllllll}0,1239 & 605 & 1909 & 3278 & 558 & 1061 & 1882\end{array}$ $\begin{array}{lllllll}0,1136 & 691 & 1813 & 3270 & 574 & 1208 & 2746\end{array}$ $\begin{array}{lllllll}0,2552 & 676 & 2194 & 3510 & 596 & 1080 & 2891\end{array}$ $\begin{array}{lllllll}0,3253 & 623 & 2032 & 3373 & 489 & 1085 & 3010\end{array}$ $\begin{array}{lllllll}0,1327 & 649 & 2051 & 3428 & 457 & 1707 & 2702\end{array}$ $\begin{array}{lllllll}0,1509 & 584 & 1798 & 2902 & 457 & 1989 & 2883\end{array}$ $\begin{array}{lllllll}0,2052 & 692 & 2173 & 3399 & 645 & 1125 & 2987\end{array}$ $\begin{array}{lllllll}0,2355 & 671 & 2190 & 3452 & 540 & 1020 & 2927\end{array}$ $\begin{array}{lllllll}0,1187 & 671 & 1964 & 3155 & 482 & 1170 & 2910\end{array}$ $\begin{array}{lllllll}0,1367 & 641 & 2033 & 3244 & 494 & 1044 & 2789\end{array}$ $\begin{array}{lllllll}0,2851 & 620 & 2126 & 2617 & 703 & 1108 & 3037\end{array}$ $\begin{array}{lllllll}0,2677 & 590 & 2215 & 3353 & 469 & 1160 & 2902\end{array}$ $\begin{array}{lllllll}0,1684 & 633 & 1915 & 3212 & 473 & 1137 & 2669\end{array}$ $\begin{array}{lllllll}0,1471 & 569 & 1706 & 3167 & 420 & 1209 & 2843\end{array}$ $\begin{array}{lllllll}0,2467 & 670 & 2186 & 3044 & 627 & 1136 & 2709\end{array}$ $\begin{array}{lllllll}0,2369 & 639 & 2104 & 3292 & 626 & 1170 & 2754\end{array}$ $\begin{array}{lllllll}0,1333 & 621 & 1726 & 2649 & 467 & 1272 & 2328\end{array}$ $\begin{array}{lllllll}0,125 & 701 & 1749 & 3176 & 496 & 1060 & 2622\end{array}$ $\begin{array}{lllllll}0,2554 & 619 & 2071 & 2887 & 580 & 1150 & 2835\end{array}$ $\begin{array}{lllllll}0,2749 & 660 & 2310 & 3191 & 454 & 1149 & 3131\end{array}$ $\begin{array}{lllllll}0,1252 & 637 & 1732 & 2879 & 516 & 1347 & 3124\end{array}$ $\begin{array}{lllllll}0,1552 & 601 & 1910 & 3143 & 427 & 1226 & 1668\end{array}$ $\begin{array}{lllllll}0,2647 & 592 & 2139 & 3545 & 622 & 1244 & 3401\end{array}$ $\begin{array}{lllllll}0,2865 & 524 & 2137 & 3097 & 435 & 1066 & 3083\end{array}$ $\begin{array}{lllllll}0,1105 & 693 & 1770 & 3086 & 485 & 1451 & 2820\end{array}$ $0,1073 \quad 605 \quad 1897 \quad 3200 \quad 422 \quad 1392 \quad 2701$ $\begin{array}{lllllll}0,2742 & 661 & 2106 & 3176 & 604 & 1087 & 3244\end{array}$ $\begin{array}{lllllll}0,3076 & 625 & 2299 & 2966 & 402 & 955 & 2441\end{array}$ $\begin{array}{lllllll}0,0938 & 563 & 1831 & 3240 & 451 & 1199 & 2677\end{array}$ $\begin{array}{lllllll}0,0993 & 504 & 1760 & 3033 & 454 & 1061 & 2574\end{array}$ $\begin{array}{lllllll}0,2147 & 631 & 2061 & 2852 & 591 & 1285 & 2294\end{array}$ $\begin{array}{lllllll}0,2452 & 531 & 2132 & 3398 & 460 & 1176 & 2849\end{array}$ $\begin{array}{lllllll}0,1024 & 658 & 1822 & 3327 & 566 & 1365 & 3355\end{array}$ $\begin{array}{lllllll}0,1079 & 641 & 1904 & 3271 & 520 & 1392 & 3234\end{array}$ $\begin{array}{lllllll}0,2375 & 649 & 2101 & 3459 & 739 & 1227 & 2858\end{array}$ $\begin{array}{lllllll}0,2871 & 626 & 2100 & 3461 & 526 & 1199 & 2714\end{array}$ $\begin{array}{lllllll}0,1676 & 693 & 1810 & 3243 & 478 & 1311 & 3277\end{array}$ $\begin{array}{lllllll}0,1619 & 685 & 1889 & 3128 & 474 & 1258 & 3107\end{array}$ $\begin{array}{lllllll}0,2405 & 613 & 2092 & 3069 & 596 & 1120 & 2963\end{array}$ $\begin{array}{lllllll}0,2877 & 608 & 2065 & 3186 & 428 & 1067 & 2633\end{array}$ $\begin{array}{lllllll}0,1365 & 587 & 2032 & 3171 & 477 & 1371 & 3174\end{array}$ $\begin{array}{llllllll}0,1362 & 664 & 1844 & 3173 & 532 & 1424 & 3316\end{array}$ $\begin{array}{lllllll}0,1612 & 653 & 1797 & 2980 & 629 & 1111 & 2902\end{array}$ $\begin{array}{llllllll}0,1949 & 644 & 2277 & 3153 & 439 & 1360 & 2780\end{array}$ $\begin{array}{lllllll}0,1036 & 729 & 1842 & 3179 & 547 & 1034 & 2723\end{array}$ $\begin{array}{lllllll}0,1161 & 699 & 1753 & 3106 & 563 & 968 & 2949\end{array}$ $\begin{array}{lllllll}0,2725 & 580 & 2178 & 3523 & 590 & 1087 & 2869\end{array}$ $\begin{array}{lllllll}0,2816 & 605 & 2261 & 3247 & 440 & 1039 & 2850\end{array}$ $\begin{array}{lllllll}0,0943 & 680 & 1712 & 3042 & 469 & 1107 & 2717\end{array}$

20_Lwo	0,179	655	1520	2399	617	105	2775	19 20_Wo
9 8_Lwo	0,3185	623	2140	2612	588	1244	286	19 8_Lwo
9 8_Lwo	0,321	734	1893	2812	601	1305	2857	19 8_Lwo
10 1_Wo	0,3267	595	2127	2899	545	1088	2452	20 1_Wo
10 1_Wo	0,2898	606	2074	2734	427	1109	24	20 1_Wo
10 2_Wo	0,256	750	2206	2960	581	1041	2531	20 2_Lwo
10 2_Lwo	0,2784	684	2194	3025	474	1052	2492	20 2_Wo
10 3_Wo	0,1713	617	1987	2757	507	945	2546	20 3_Wo
10 3_Wo	0,2081	593	2290	2991	514	984	2522	20 3_Wo
10 4_Wo	0,2599	657	2043	2671	561	986	2366	20 4_Wo
10 4_Wo	0,269	580	2029	2802	544	1055	2402	20 4_Wo
10 5_Wo	0,2129	657	2208	2777	561	1041	2397	20 5_Wo
10 5_Wo	0,239	543	2115	3022	556	1011	2293	20 5_Wo
10 6_WoN	0,2851	716	2167	3044	565	1007	25	20 6_WoN
10 6_WoN	0,2368	809	2138	2877	362	923	25	20 6_WoN
10 7_Wo	0,2025	519	2226	2976	536	1020	25	20 7_Wo
10 7_Wo	0,2085	539	2244	2999	432	941	2638	20 7_Wo
10 8_Lw	0,276	786	2230	2983	507	1157	2555	20 8_Lwo
10 8_Lw	0,236	730	2123	2824	506	1169	25	20 8_Lwo
10 9_Wo	0,3008	657	213	2909	619	1121	2448	20 9_Wo
10 9_Wo	0,2019	632	2000	2558	648	1298	2341	20 9_Wo
10 10_Lwo	0,2044	611	1975	3043	547	1197	2367	20 10_Lwo
10 10_Lwo	0,2196	613	1982	2864	513	1157	2587	20 10_Lw
10 11_Lwo	0,2794	67	2113	3032	539	1301	47	20 11_Lwo
10 11_Lwo	0,2489	633	2145	2849	525	1152	24	20 11_Lwo
10 12_Lwo	0,239	564	2160	2902	512	1165	2451	20 12_Lw
10 12_Lwo	0,2348	599	1659	2393	579	1192	2673	20 12_Lwo
10 13_WN	0,2864	626	2229	2901	527	1064	2550	2013
10 13_LwN	0,2964	640	2315	2926	416	1075	25	2013
10 14_Lwo	0,2529	654	2149	3038	602	1201	2642	2014
10 14_Lw	0,2858	655	2018	2872	494	1227	2749	20 14_WoN
10 15_Lw	0,3399	634	2364	3092	496	1033	2448	20 15_Lw
10 15_Lw	0,351	620	2230	3035	437	1115	2520	20 15_Lwo
10 16_Lwo	0,2094	626	2167	2955	501	1183	25	20 16_Lwo
10 16_L	0,1918	617	2082	2928	590	1470	2663	20 16_Lwo
10 17_Lw	0,3936	669	2185	2948	505	1382	2597	20 17_M
10 17_Lwo	0,2816	765	2206	3009	447	1098	2621	20 17_M
10 18_Lw	0,2483	631	2097	2887	456	1131	2592	20 18_Lwo
10 18_Lwo	0,2077	628	1970	2425	529	1312	269	20 18_Lw
10 19_Wo	0,3204	572	2019	2661	585	1149	2546	20 19_Lwo
10 19_Lwo	0,3031	618	1803	2662	583	1139	2501	20 19_Lw
10 20_Lw	0,2192	599	2205	2959	514	1155	2283	20 20_Wo
10 20_Wo	0,1966	574	1802	2712	515	1109	2517	20 20_W
10 21_Lw	0,3461	702	2059	3098	496	1099	259	20 21_Lw
10 21_Lwo	0,2675	826	2203	2941	519	1140	2643	20 21_Lw
10 22_Lwo	0,2528	528	2307	2996	504	1090	244	20 22_Lwo
10 22_Lw	0,197	615	1629	2277	500	1143	230	20 22_Lw
10 23_Wo	0,295	94	2357	2980	570	1125	229	20 23_Lwo
1023 _Wo	0,2444	611	2071	2909	618	1229	230	20 23_Lwo
10 24_Wo	0,2615	680	2085	2963	565	1034	2308	20 24_Lwo
10 24_Wo	0,2397	599	1998	2895	558	1047	23	20 24_Lwo
10 25_Lw	0,1784	664	2040	2933	514	1146	248	20 25_Wo
10 25_Lwo	0,191	607	2036	2789	545	1155	2670	20 25_Wo
10 26_Wo	0,2664	646	1814	2589	542	1054	2243	20 26_Lwo
10 26_Wo	0,2433	625	2074	2571	519	1011	2422	20 26_Lwo
10 27_Lw	0,2203	665	2098	2939	458	981	25	20 27_Lwo
10 27_Lw	0,2579	603	1612	2557	479	1009	265	20 27_Lwo
10 28_Wo	0,2399	628	1897	2378	508	1065	2307	20 28_Lw
10 28_Lw	0,2645	610	1809	2889	456	1062	2416	20 28_Lw
10 29_Lw	0,1844	605	2124	2967	432	1238	2614	20 29_Lwo
10 29_Lw	0,2144	658	2077	2876	460	1332	26	20 29_Lwo
10 30_Lw	0,3507	614	1987	2892	538	1204	237	20 30_Lwo
10 30_Lw	0,2974	645	1749	2184	485	1210	2368	20 30_Lw
10 31_W	0,2697	627	1450	2030	393	1441	2515	20 31_Wo
10 31_Lw	0,2556	642	1883	2600	489	1305	2592	20 31_Wo
10 2_Wo	0,2395	732	2203	3012	584	1084	239	20 2_Wo
10 2_Wo	0,2294	762	2329	3028	634	1065	244	20 2_Wo
10 1_Wo	0,2739	629	2098	2716	610	1234	2487	20 1_Wo
10 1_Wo	0,2657	602	2040	2712	665	1213	2404	20 1_M
10 30_Lwo	0,3094	647	2210	2975	527	1177	2359	20 30_Lwo
10 30_Lw	0,223	661	1992	2884	498	1176	230	20 30_Wo
10 25_Wo	0,1929	602	2091	2930	518	1127	2589	20 25_Wo
10 25_Wo	0,208	614	2032	2885	500	1044	2606	20 25_Wo
10 28_Lwo	0,267	642	1830	2490	551	1144	2462	20 28_Lwo
10 28_Lwo	0,2528	636	1769	2623	467	1127	2521	20 28_Lw
10 7_Lwo	0,2228	607	1865	2851	565	1054	262	20 7_Wo

10 7_Lwo	0,2522	631	2119	2880	553	1051	2716	20 7_Wo
10 26_M	0,3236	623	1239	2374	543	1007	2618	20 26_Lwo
10 26_M	0,2621	650	2094	2894	541	1057	2445	20 26_Wo
10 31_Lw	0,2187	651	2217	2950	405	1175	2639	20 31_Lw
10 31_Lw	0,2298	660	2086	2858	472	1100	2498	20 31_W
10 24_Wo	0,2553	651	1929	2826	581	1183	2221	20 24_Wo
10 24_Lw	0,2393	654	2022	2898	475	1131	2476	20 24_Lw
10 22_Lw	0,219	636	2218	3020	493	1179	2673	20 22_Wo
10 22_Lw	0,2252	665	2099	2821	434	998	2439	20 22_Wo
10 23_Wo	0,2796	655	2293	2893	541	1120	2308	20 23_Lwo
10 23_Wo	0,2046	603	2017	2805	630	1314	2397	20 23_Wo
10 27_Lw	0,2134	655	2145	2949	449	1090	2557	20 27_Wo
10 27_Lwo	0,217	612	1821	2756	502	951	2627	20 27_NL
10 4_Wo	0,284	666	2040	2800	520	1022	2341	20 4_Lwo
10 4_Lwo	0,2438	638	2014	2646	502	995	2418	20 4_Lwo
10 10_Lw	0,218	636	2085	2955	473	982	2554	20 10_Lwo
10 10_Lw	0,2315	635	2171	2859	394	957	2555	20 10_NL
10 11_Lwo	0,2652	713	2213	2974	522	1154	2485	20 11_Lw
10 11_Lw	0,2829	611	1507	2572	512	1210	2548	20 11_Lw
10 14_Lw	0,2343	619	2124	2978	458	1104	2725	20 14_Lwo
10 14_Wo	0,1898	550	1367	2526	646	1221	2474	20 14_LwoN
10 17_Wo	0,2865	788	2259	2911	506	1042	2441	20 17_Lwo
10 17_M	0,3619	753	2216	2934	465	958	2594	20 17_M
10 29_Lw	0,2003	630	2206	2835	469	1172	2711	20 29_Lw
10 29_Lwo	0,2703	627	2072	2904	524	1263	2707	20 29_Lw
10 15_Lw	0,2849	645	1333	2564	489	1091	2542	20 15_Lwo
10 15_Wo	0,2214	672	2119	3026	565	1225	2365	20 15_Wo
10 3_Wo	0,1451	613	1113	2292	531	1121	2442	20 3_Wo
10 3_Wo	0,1818	623	2025	2904	521	1031	2751	20 3_Wo
10 13_M	0,2275	713	2179	2988	770	1182	2665	20 13_WoN
10 13_Wo	0,2275	691	1995	2963	597	1118	2594	20 13_LwoN
10 16_Lw	0,2171	651	2135	2970	497	1202	2821	20 16_Lwo
10 16_Lw	0,2095	653	2112	2878	497	1219	2921	20 16_Lw
10 9_Wo	0,3051	588	1622	2719	566	1055	2300	20 9_Wo
10 9_Wo	0,2435	614	2121	2852	622	1194	2358	20 9_Lw
10 18_Lw	0,2194	637	1690	2345	506	1168	2669	20 18_Lw
10 18_Lw	0,2415	651	1940	2751	485	1047	2590	20 18_Lw
10 19_Wo	0,2657	645	1819	2510	596	1240	2569	20 19_Lwo
10 19_Wo	0,2539	630	1681	2463	534	1108	2436	20 19_Lwo
10 12_Lwo	0,2674	625	2164	2933	521	1149	2670	20 12_Lwo
10 12_Lwo	0,2328	589	2112	2821	558	1103	2488	20 12_Lw
10 6_WN	0,2902	677	2219	3015	597	1031	2548	20 6_LwN
10 6_WoN	0,258	689	2185	2983	729	1115	2583	20 6_LwN
10 5_Wo	0,193	669	2152	3057	618	1068	2453	20 5_Lwo
10 5_Lwo	0,2127	622	1549	2250	595	1036	2650	20 5_Wo
10 21_W	0,2777	790	2146	2842	531	1195	2441	20 21_Lwo
10 21_Lw	0,2717	785	2269	2983	548	1017	2577	20 21_Lwo
10 20_W	0,2303	558	1902	2719	462	1025	2478	20 20_Wo
10 20_W	0,2033	610	1997	2966	436	1051	2721	20 20_M
10 8_Lw	0,2973	620	884	2655	535	1103	2575	20 8_Lwo
10 8_Lwo	0,3189	750	2212	3026	435	1223	2735	20 8_Lw

0,1268	627	1970	2306	640	1059	2449
0,2371	685	1980	2827	593	1066	2687
0,2126	653	1964	2860	552	1015	2563
0,1856	642	2020	2837	537	1240	2461
0,1807	633	2034	2945	479	1359	2447
0,2465	638	2105	2899	574	988	2694
0,2034	635	1983	2722	505	972	2403
0,1527	605	1782	2899	557	1174	2656
0,1525	657	2030	2977	631	1133	2560
0,3026	665	2058	2980	651	943	2843
0,2862	653	2035	2880	693	1609	2733
0,1699	627	2007	2791	534	1044	2615
0,1791	560	2158	2906	498	1322	2340
0,2557	616	2041	2832	586	953	2658
0,2866	695	1974	2747	425	1025	2398
0,1935	603	2115	2914	524	1185	2765
0,1748	614	1757	2769	677	1338	2726
0,257	659	2139	2968	500	1160	2977
0,2164	684	2150	2896	467	1080	2515
0,168	575	2084	2970	650	1210	2770
0,1617	609	2055	2905	651	1120	2486
0,2884	747	2050	2949	631	1137	3055
0,3101	728	2100	2901	535	1336	2803
0,1755	612	1994	2878	510	1246	2451
0,1592	657	1855	2599	507	1280	2507
0,255	620	2175	3006	574	1060	2834
0,2121	662	1965	2671	554	1171	2818
0,1489	539	2062	2904	577	1064	2608
0,1447	555	2004	3023	510	1009	2551
0,2184	750	2136	2951	649	1108	2578
0,2108	716	2088	3020	596	929	2502
0,1706	595	2059	2903	613	1384	2913
0,1742	648	2009	2886	520	1183	2630
0,326	642	2055	2859	598	971	2516
0,2776	707	1942	2833	532	1227	2498
0,192	582	2044	2852	522	1274	2916
0,2099	690	1884	2563	493	1305	2820
0,251	623	2092	2919	645	1011	2799
0,2276	681	1991	2781	614	1331	2654
0,1743	606	2037	2875	546	1223	2869
0,1842	517	2067	2921	560	1287	2637
0,22	793	2174	2961	674	968	2477
0,2043	734	2098	2847	526	932	2311
0,1735	680	1850	2682	619	1018	2825
0,1566	663	1954	2783	583	1006	2504
0,2664	719	2182	2949	648	1107	2761
0,2699	642	2163	2945	575	1135	2550
0,1512	566	1959	2808	523	1063	2479
0,1807	626	2101	2841	515	1210	2810
0,2265	622	2165	2931	622	1212	2886
0,2302	620	2108	2885	455	1166	2976
0						

APPENDIX L

PRAAT SCRIPT

```
##
#### Script description
##
## Get formants mean and calculate the ratios F3/F1 and F2/F1 of
## stretches of a soundwave which encompasses part of the syllable peak and
##
##
##
##
##
##
##
##
##
Any labeled label in the specified tier will be logged.
## The result of this script will be a file called: formants.txt
##
##
##
##
##
##
## By Jacir Paulo Baratieri (2006)
##
#### End of description
form Measuring formants (burg)
    comment Which are the directory to read from/write to: and the participants (10 to 30 or * for all):
    sentence Directory_to_read_from C:\projectldatalFinal_data
    sentence Directory_to_writ__to C:\projectldatalresults\formants
    sentence File_to_write formants.txt
    comment Which is the participant? (from 10 to 30 or * for all)
    sentence Participant_number 10
    comment Which tier do you want to extract the formants from?
    optionmenu Tear_number
    option 1
    option 2
    option }
    option 4
    option }
comment
    comment SET PEAK MEASUREMENT
    comment Which % to mark as peak initial and end points?
    natural initial_percentile_peak 5
    natural final_percentile_peak 20
comment
    comment SET LATERAL MEASUREMENT
    comment Which % to mark as lateral initial and end points?
    natural initial_percentile_lateral 65
    natural final_percentile_lateral 100
comment
    comment Other details:
    positive Max_number_of_formants 5
    boolean Pre-emphasis_6dB/oct yes
endform
# shorten variables
```

```
directory$ = directory_to_read_from$
directory_to_write$ = directory_to_write_to$
file$ = participant_number$
write$ = file_to_write$
tier$ = tear_number$
point1 = initial_percentile_peak
point2 = final_percentile_peak
point3 = initial_percentile_lateral
point4 = final_percentile_lateral
```

filedelete 'directory_to_write\$'l'write\$'

```
header_row$ = "alloph" + tab$ + "Part" + tab$ + "Gend" + tab$ + "Alloph"
...+ tab$ +"nasal" + tab$ + "cont" + tab$ + "cont1" + tab$ + "voic" + tab$
...+ "mann" + tab$ + "plac" + tab$ + "Dur(ms.)" + tab$ + "peakF1" + tab$
...+ "peakF2" + tab$ + "peakF3" + tab$ + "rpF3:F1" + tab$ + "rpF2:F1"
...+ tab$ + "liqF1" + tab$ + "liqF2" + tab$ + "liqF3" + tab$ + "rlF3:F1"
...+ tab$ + "rlF2:F1" + tab$ + "PL_F2/F2" + tab$ + "grade" + tab$ + newline$
fileappend "'directory_to_write$'''write$'" 'header_row$'
Create Strings as file list... list 'directory$''file$'*.wav
number_files = Get number of strings
for j from 1 to number_files
```

select Strings list
current_token\$ = Get string... 'j'
Read from file... 'directory\$'l'current_token\$'
object_name\$ = selected \$ ("Sound")
\# Male or female?
$\mathrm{g} \$=$ mid $\$($ object_name $\$, 6,1)$
if $\mathrm{g} \$=$ " M "
To Formant (burg)... 0.0025550000 .02550
else
To Formant (burg)... 0.0025555000 .02550
endif
select Sound 'object_name\$'
To Pitch... 0.0175600
Read from file... 'directory\$'I'object_name\$'.TextGrid
select TextGrid 'object_name\$'
number_of_intervals = Get number of intervals... 'tier\$'
count $=0$
for b from 1 to number_of_intervals
select TextGrid 'object_name\$'
interval_label\$ = Get label of interval... 'tier\$' 'b'
if interval_label\$!= ""
count $+=1$
lab'count' $=\mathrm{b}$

```
    alloph$ = right$ (interval_label$, 2)
    # L = 1
        if alloph$ = "_L"
        alloph$ = "1"
    # Lwo = 2
        elsif alloph$ = "wo"
        alloph$ = "2"
    # Lw = 3
        elsif alloph$ = "Lw"
        alloph$ = "3"
    # Wo = 4
        elsif alloph$ = "Wo"
        alloph$ = "4"
    # W = 5
        elsif alloph$ = "_W"
        alloph$ = "5"
    else
    alloph$ = "99"
    endif
\# Check for nasal realizations - if the label contains N
nasal\$ = right\$ (interval_label\$, 1)
\[
\# \mathrm{~N}=1
\]
        if nasal$ = "N"
        nasal$ = "1"
        else
        nasal$ = "2"
    endif
# transform nominal labels into numeric labels
# Context
    context$ = left$ (interval_label$, 2)
    # final L = 1
        if context$ = "1_"
        context$ = "1"
        elsif context$ = "9_"
        context$ = "1"
        elsif context$ = "23"
        context$ = "1"
    # Lp = 2
        elsif context$ = "2_"
        context$ = "2"
    # L p = 3
        elsif context$ = "3_"
        context$ = "3"
    # Lb = 4
        elsif context$ = "4_"
        context$ = "4"
    # L b = 5
        elsif context$ = "5_"
        context$ = "5"
```

```
# Lm = 6
    elsif context$ = "6_"
    context$ = "6"
# L m = 7
        elsif context$ = "7_"
        context$ = "7"
# Lt = 8
        elsif context$ = "8_"
        context$ = "8"
# L t = 10
        elsif context$ = "10"
        context$ = "10"
# Ld = 11
        elsif context$ = "11"
        context$ = "11"
# L d = 12
        elsif context$ = " 12"
        context$ = "12"
# Ln = 13
        elsif context$ = "13"
        context$ = "13"
# L n = 14
        elsif context$ = "14"
        context$ = "14"
# Ls = 15
        elsif context$ = "15"
        context$ = "15"
# L s = 16
        elsif context$ = "16"
        context$ = "16"
# Lz = 17
        elsif context$ = "17"
        context$ = "17"
# L z = 18
        elsif context$ = "18"
        context$ = "18"
# Lk = 19
        elsif context$ = " 19"
        context$ = "19"
# L k = 20
        elsif context$ = "20"
        context$ = "20"
# Lg = 21
        elsif context$ = "21"
        context$ = "21"
# L g = 22
        elsif context$ = "22"
        context$ = "22"
# Lf = 24
        elsif context$ = "24"
        context$ = "24"
# L f= 25
        elsif context$ = "25"
        context$ = "25"
# Lv=26
        elsif context$ = "26"
        context$ = "26"
# Lv=27
        elsif context$ = "27"
        context$ = "27"
```

```
    # Lsh = 28
    elsif context$ = "28"
    context$ = "28"
    # L sh = 29
        elsif context$ = "29"
        context$ = "29"
    # Lj = 30
        elsif context$ = "30"
        context$ = "30"
    # Lj = 31
    elsif context$ = "31"
    context$ = "31"
    else context$ = "99"
    endif
# transform nominal labels into numeric labels
# Voicing
voice$ = left$ (interval_label$, 2)
    # final L = 99
        if voice$ = "1_" or voice$ = "9_" or voice$ = "23"
        voice$ = "99"
    # unvoiced = 2
    elsif voice$ = "2_" or voice$ = "3_" or voice$ = "8_" or voice$ = "10"
    ...or voice$ = "15" or voice$ = "16" or voice$ = "19" or voice$ = "20"
    ...or voice$ = "24" or voice$ = "25" or voice$ = "28" or voice$ = "29"
    voice$ = "2"
    # voiced = 1
    elsif voice$ = "4_" or voice$ = "5_" or voice$ = "11" or voice$ = "12"
    ...or voice$ = "17" or voice$ = "18" or voice$ = "21" or voice$ = "22"
    ...or voice$ = "26" or voice$ = "27" or voice$ = "30" or voice$ = "31"
    ...or voice$ = "6_" or voice$ = "7_" or voice$ = "13" or voice$ = "14"
    voice$ = "1"
    else voice$ = "99"
    endif
# transform nominal labels into numeric labels
# context within or accross words
context1$ = left$ (interval_label$, 2)
    # final L = 1
    if context1$ = "1_" or context 1$ = "9_" or context1$ = "23"
    context1$ = "1"
    # within the word = 2
    elsif context1$ = "2_" or context1$ = "4_" or context1$ = "6_"
    ...or context1$ = "8_" or context1$ = "11" or context1$ = "13"
    ...or context1$ = "15" or context1$ = "17" or context1$ = "19"
    ...or context1$ = "21" or context1$ = "24" or context1$ = "26"
    ...or context1$ = "28" or context1$ = "30"
    context1$ = "2"
```

```
    # accross the word = 3
    elsif context1$ = "3_" or context1$ = "5_" or context1$ = "7_"
    ...or context1$ = "10" or context1$ = "12" or context1$ = "14"
    ...or context1$ = "16" or context1$ = "18" or context1$ = "20"
    ...or context1$ = "22" or context1$ = "25" or context1$ = "27"
    ...or context1$ = "29" or context1$ = "31"
    context1$ = "3"
    else context1$ = "99"
    endif
# transform nominal labels into numeric labels
# Manner of articulation
place$ = left$ (interval_label$, 2)
    # final L = 1
        if place$ = "1_" or place$ = "9_" or place$ = "23"
        place$ = "99"
    # bilabial = 1
        elsif place$ = "2_" or place$ = "3_" or place$ = "4_" or place$ = "5_"
        ...or place$ = "6_" or place$ = "7_"
        place$ = "1"
    # labialdental = 2
        elsif place$ = "24" or place$ = "25" or place$ = "26" or place$ = "27"
        place$ = "2"
    # alveolar = 3
        elsif place$ = "8_" or place$ = "10" or place$ = "11" or place$ = "12"
        ...or place$ = "13" or place$ = "14" or place$ = "15" or place$ = "16"
        ...or place$ = "17" or place$ = "18"
        place$ = "3"
    # post-alveolar = 4
        elsif place$ = "28" or place$ = "29" or place$ = "30" or place$ = "31"
        place$ = "4"
    # velar = 5
    elsif place$ = "19" or place$ = "20" or place$ = "21" or place$ = "22"
    place$ = "5"
    else place$ = "99"
    endif
# transform nominal labels into numeric labels
# Manner of articulation
manner$ = left$ (interval_label$, 2)
    # final L= 1
        if manner$ = "1_" or manner$ = "9_" or manner$ = "23"
        manner$ = "99"
    # plosive = 1
        elsif manner$ = "2_" or manner$ = "3_" or manner$ = "4_" or manner$ = "5_"
        ...or manner$ = "8_" or manner$ = "10" or manner$ = "11" or manner$ = " "12"
```

```
    ...or manner$ = "19" or manner$ = "20" or manner$ = " 21" or manner$ = "22"
    manner$ = "1"
# nasal = 2
    elsif manner$ = "6_" or manner$ = "7_" or manner$ = "13" or manner$ = "14"
    manner$ = "2"
# fricative = 3
        elsif manner$ = "15" or manner$ = "16" or manner$ = "17" or manner$ = "18"
        ...or manner$ = "24" or manner$ = "25"
    ...or manner$ = "26" or manner$ = "27" or manner$ = "28" or manner$ = "29"
        ...or manner$ = "30" or manner$ = "31"
        manner$ = "3"
        else manner$ = "99"
    endif
## Grade the productions according to the allophones produced
## W or Wo = 10 -- Lw or Lwo = 5 ---- and L = 0
    grade$ = right$ (interval_label$, 2)
    if grade$ = "_W" or grade$ = "Wo"
    grade$ = "10"
    elsif grade$ = "Lw" or grade$ = "wo"
    grade$ = "5"
    elsif grade$ = "_L"
    grade$ = "0"
    else
    grade$ = "99"
        endif
```

\# Here the participants and their gender will be turned into numeric variables

```
part$= left$(object_name$, 2)
gender$ = mid$(object_name$, 6, 1)
if gender$ = "M"
gender$ = "1"
else
gender$ = "2"
endif
```

\# set time, duration, etc. that will be used to extrat the formants from \# it refers to the labeled intervals

```
begin = Get starting point... 'tier$' 'b'
end = Get end point... 'tier$' 'b'
duration = end - begin
start_peak = begin + (duration * point1 / 100)
finish_peak = begin + (duration * point2 / 100)
start_lateral = begin + (duration * point3 / 100)
finish_lateral = begin + (duration * point4 / 100)
```

\# point1, 2, 3 and point4 were defined when you run the script

```
select Formant 'object_name$'
pf1 = Get mean... 1 'start_peak' 'finish_peak' Hertz
pf2 = Get mean... 2 'start_peak' 'finish_peak' Hertz
pf3 = Get mean... }3\mathrm{ 'start_peak' 'finish_peak' Hertz
lf1 = Get mean... 1 'start_lateral' 'finish_lateral' Hertz
lf2 = Get mean... 2 'start_lateral' 'finish_lateral' Hertz
lf3 = Get mean... }3\mathrm{ 'start_lateral' 'finish_lateral' Hertz
\# calculate the ratios and make the variables
\[
\begin{aligned}
& \mathrm{rl1}=\mathrm{lf} 3 / \mathrm{lf} 1 \\
& \mathrm{rl2}=\mathrm{lf} 2 / \mathrm{lf} 1 \\
& \mathrm{rp1}=\mathrm{pf} 3 / \mathrm{pf} 1 \\
& \mathrm{rp2} 2=\mathrm{pf} 2 / \mathrm{pf} 1 \\
& \mathrm{rpl1}=\mathrm{pf} 2 / \mathrm{lf} 2
\end{aligned}
\]
\# Write in the file: formant.txt
```

fileappend "'directory_to_write\$'I'write\$'" 'interval_label\$"tab\$"part\$"tab\$"gender\$"tab\$"alloph\$"tab\$' ...'nasal\$"tab\$"context\$"tab\$"context1\$"tab\$"voice\$"tab\$"manner\$"tab\$"place\$"tab\$"duration:4"tab\$' ...'tab\$"pf1:0"tab\$"pf2:0"tab\$"pf3:0"tab\$"rp1:2"tab\$"rp2:2"tab\$"lf1:0"tab\$"lf2:0"tab\$"lf3:0"tab\$"rl1:2' ...'tab\$"rl2:2"tab\$"rpl1:2"tab\$"grade\$"tab\$"newline\$'
endif
endfor
select all
minus Strings list
Remove
endfor
select all
Remove
clearinfo
print Ok, done.

[^0]: ${ }^{1}$ For the participants of the present study L2 means foreign language. Hence, L2 and foreign language are used interchangeably.

[^1]: ${ }^{2}$ RP - Received Pronunciation: accent spoken throughout England, mainly by the upper-middle and upper class.
 ${ }^{3}$ GA - General American: accent spoken throughout the USA, but which does not carry any regional characteristic.
 ${ }^{4}$ SSE - Scottish Standard E: accent spoken in Scotland.

[^2]: ${ }^{5}$ The Fens are in the Northernmost part of South-East of England.
 ${ }^{6}$ Romance languages: the languages that descend from Latin (for example, French, Italian, Catalan, Spanish, Portuguese)

[^3]: 7 "A sound wave is a traveling pressure fluctuation that propagates through any medium that is elastic enough to allow molecules to crowd together and move apart" (Johnson, 2003, p. 4).

[^4]: ${ }^{8}$ Aperiodic sound waves are characterized by a non-repeating pattern, affecting the air particles at random (Johnson, 2003; Hayward, 2000).
 ${ }^{9}$ Periodic sound waves are characteristic of voiced sonorants. Their main feature is a repeating waveform pattern (cycle) which is the result of the vocal cords vibration. The frequency of repetition is called Fundamental Frequency (F0) (Hayward, 2000; Johnson, 2003).
 ${ }^{10}$ F0 changes according to the vocal cords mass and stiffness; the thinner and stiffer the vocal cords are, the more they vibrate and hence the higher the F0 is (Stevens, 1997). For these reasons children and women have higher F0 than men.
 ${ }^{11} \mathrm{Hertz}(\mathrm{Hz})$: a unit of frequency. It stands for the number of cycles per second.

[^5]: ${ }^{12}$ The passages of the mouth, throat, and nose are collectively called the vocal tract (Ladefoged, 2001).
 ${ }^{13}$ The natural resonant frequencies of the vocal tract (Johnson, 2003). The formants can be identified as the most prominent peaks of a sound spectrum.
 ${ }^{14}$ Active articulators: tongue, lips and uvula.

[^6]: ${ }^{15}$ Sine refers to the sinusoidal shape of the wave. That is, a periodic sound wave representation has a sine-like shape.

[^7]: ${ }^{16}$ A segment or a chunk of a waveform that has been windowed (Johnson, 2003).

[^8]: ${ }^{17}$ Bandwidth refers to the width (in Hz) of the resonance peak (Johnson, 2003).

[^9]: ${ }^{18}$ Digitalized sounds are the result of the continuous speech conversion into digits (digital signal) (Johnson, 2003)

[^10]: ${ }^{19}$ Pole-zero clusters: great downward tilts of frequencies.

[^11]: ${ }^{20}$ To the Top is a three-level Advanced English Course which consists of 57 hours of instruction per level. After completing the third level, students are advised to take the TOEFLl ITP test.

[^12]: ${ }^{21} \mathrm{C}$ stands for the consonants $/ \mathrm{p} /$, /b/, /t/, /d/,/k/,/g/,/f/, /v/, /s/,/z/,/f/,/3/,/m/ or /n/

[^13]: ${ }^{22}$ PRAAT - doing phonetics by computer, by Paul Boersma \& David Weening, free download from www.praat.org. It is basically a program to carry out acoustic analysis.
 ${ }^{23}$ TextGrid is a Praat tool that consists of a number of tiers which can be used for annotation (segmentation and labeling).

[^14]: ${ }^{24}$ The strategies used to measure the formants are described in 4.4.2.2.1 - Extraction of acoustic features.

[^15]: ${ }^{25}$ The darker is the spectrogram's shade the higher is the amplitude.
 ${ }^{26}$ Information extracted from the spectrogram in a certain time which shows the amplitude versus frequencies.

[^16]: ${ }^{27}$ A great downward tilt at high frequencies.
 ${ }^{28}$ An extra low frequency formant around 300 Hz which is the result of addition the nasal tube to the oral one.

[^17]: ${ }^{29}$ The difference between the symbols is due to different vowel quality in terms of height. "wo" is more similar to /D/ or / / / and "w" is more similar to / u / or /v/.
 ${ }^{30}$ See note 10.

[^18]: ${ }^{31}$ The mean (G) represents the degree of /I/ vocalization of each phonological environment investigated. ' G ' was calculated by summing up the results of the number of each production of /I/ (NP) multiplied by its specific grades ($\mathrm{L}=0, \mathrm{Lw}=5$ and $\mathrm{W}=10$) and dividing it by the total number of production (N). Then, the higher the ' G ' the more vocalized the production, thus enabling comparison between phonological environments.

[^19]: ${ }^{32}$ It is necessary to stress that running so many Wilcoxon tests increases the chances of statistical error. Thus, the results should be regarded with extreme caution.

[^20]: The carrier sentence was plotted on the top left side of each slide;
 The target word(s) was/were plotted in the slide center;
 The words in the slides 3 to 8 were used during the performing session too. They were chosen deliberately for the training session due to the fact that they could cause pronunciation problems in relation to the consonantal phoneme that follows /l/.

[^21]: ${ }^{33}$ These codes refer to the judgment of the "participants' production of the phoneme /I/"
 ${ }^{34}$ The missing values refer to the productions that were not considered in the results.
 ${ }^{35}$ It was added N to the labels L, Lw, Lwo, Wo and W every time there was nasalized features.

[^22]: ${ }^{36}$ This file contains a spreadsheet with 2480 lines. Each line corresponds to one token. This spreadsheet was made automatically by running a 'Prat' script created specially for this study (Appendix E).

[^23]: ${ }^{37} \mathrm{~L}=0, \mathrm{Lw}=5, \mathrm{~W}=10--$ - Grade: sum up all the grades of each participant for each specific context and divide it by the valid N of each specific context. The result means the degree of vocalization.

