Educadores

Ínicio : Matemática : Teses : 

Produções de Profissionais da Seed: Teses (10)


Ordenar por:  Título () Data () Notas () Popularidade ()
Ordenados por: Notas (Do melhor para o pior avaliado)

Categoria: Matemática Teses
Fazer Download agora!Atividades digitais e a construção dos conceitos de proporcionalidade: uma análise a partir da teori Popular Versão: PDF
Atualização:  9/8/2013
Descrição:
FIOREZE, Leandra Anversa

Nesta tese, foi desenvolvida uma investigação, utilizando, principalmente, atividades digitais relacionadas com a aprendizagem dos conceitos de proporcionalidade. A base para analisar as construções conceituais dos alunos é a Teoria dos Campos Conceituais, de Gerard Vergnaud. Esta teoria é considerada cognitivista e busca compreender os processos de conceitualização, situando e estudando as filiações e rupturas entre conhecimentos do ponto de vista de seu conteúdo conceitual. Além disso, esta teoria trabalha com a noção de conhecimento a partir das habilidades e informações expressas pelas crianças e adolescentes. Para garantir uma maior abrangência de situações envolvendo o campo conceitual das estruturas multiplicativas e da proporcionalidade, selecionou-se os softwares Régua e Compasso, planilha eletrônica, geoplano, dois objetos de aprendizagem criados pelo grupo de pesquisa RIVED/UNIFRA, um vídeo “Matemática na Vida: Razão e Proporção”, do portal Domínio Público e objetos materiais como maquetes, molas , moedas, folhas de papel. Para o acompanhamento das aulas e permitir a socialização e a interação por meio de comentários, foi criado um Blog no Wordpress. A metodologia escolhida foi a Engenharia Didática, que valoriza as relações de dependência entre a dimensão teórica e a prática da pesquisa. Os sujeitos da pesquisa foram alunos da oitava série de uma escola municipal, situada na zona rural do município de Silveira Martins, RS. Os resultados demonstram potenciais contribuições das atividades digitais para o de desenvolvimento das estruturas multiplicativas e da proporcionalidade. Verificou-se que as duplas de alunos conseguiram maior coerência no uso de modelos explicativos em diferentes situações, interpretando as situações e resolvendo-as de forma a explicitar seus conhecimentos, utilizando a linguagem natural ou simbólica e estabelecendo relações com as novas situações a vencer. Nesse sentido, os teoremas em ação e os conceitos em ação se tornaram mais claros, atingindo um novo patamar, em que os conceitos espontâneos evoluíram para conceitos científicos. Há de se destacar que o professor tem um papel importante no planejamento, na escolha das atividades e no nível de profundidade abordado, devendo levar em conta o desenvolvimento cognitivo dos sujeitos, pois isto é um fator que poderá motivar ou não o aluno a “aprender a aprender”, ou seja, a querer ser o autor do seu próprio processo de construção de conhecimento.

Palavras-chave: Matemática.Proporcionalidade. Teoria dos Campos Conceituais. Engenharia Didática. Ambiente de aprendizagem. Software Educacional. Aluno. Ensino Fundamental. Ambiente Digital. Vergnaud, Gerard.

Downloads 203  203  Tamanho do arquivo 0 bytes  Plataforma UFRGS  Site http://www.ufrgs.br/
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


Categoria: Matemática Teses
Fazer Download agora!A presença de Nicolas Bourbaki na Universidade de São Paulo Popular Versão: 
Atualização:  10/5/2012
Descrição:
PIRES, Rute da Cunha

Este trabalho teve como objetivo retratar o grupo francês Nicolas Bourbaki, e o Departamento de Matemática da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo, bem como investigar a que se deve a presença, por períodos intermitentes, entre os anos de 1945 e 1966, de alguns dos mais importantes membros do grupo Bourbaki, neste Departamento e de que modos a perspectiva estruturalista bourbakista da matemática, teria sido, por um lado transmitida por eles e, por outro lado, recebida, apropriada e re-significada pela comunidade acadêmico-institucional de professores do Departamento de Matemática da USP, no que diz respeito à produção da pesquisa em Matemática e à formação do bacharel em matemática e do professor de matemática. Para o desenvolvimento do trabalho, a base documental e bibliográfica foi escolhida com o intuito de levantar, caracterizar e constituir o objeto da pesquisa. A presença de Bourbaki na Universidade de São Paulo se deve a dois fatores: a Segunda Guerra Mundial e as relações entre os professores da USP e os professores estrangeiros que nela estiveram quando da criação da mesma. Inúmeros cursos e conferências foram realizados durante a permanência no departamento destes membros do grupo Bourbaki, onde puderam transmitir seu ponto de vista estrutural da Matemática. Através das concepções de Bourbaki e dos tópicos de matemática contemplados nos cursos e conferências ministrados pelos membros do grupo junto ao Departamento, pode-se levantar parâmetros que pudessem indicar a influência da perspectiva bourbakista da matemática, nas teses para professor catedrático, nas teses de doutoramento e nos programas para o curso de Matemática. Concluiu-se que esta influência é incontestável.

Palavras-chave: Grupo Bourbaki. Universidade de São Paulo. Influência bourbakista.

Downloads 3747  3747  Tamanho do arquivo 0 bytes  Plataforma PUC – São Paulo  Site http://
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


Categoria: Matemática Teses
Fazer Download agora!Argumentos e metáforas conceituais para a taxa de variação Popular Versão: 
Atualização:  10/5/2012
Descrição:
DALL'ANESE, Cláudio

Esta investigação teve por objetivo identificar e analisar argumentos e metáforas utilizadas por um grupo de alunos de um curso de pós-graduação em Educação Matemática para taxa de variação, para entender como é que eles aprendem esse tópico. A opção de trabalhar com esses sujeitos recaiu no fato de serem todos professores de Matemática do ensino fundamental e/ou médio e já terem visto Cálculo em sua graduação. A esses sujeitos foram oferecidas tarefas num cenário de aprendizagem onde se privilegiou o diálogo entre professor, alunos e tecnologia. A visão adotada com relação à tecnologia foi a de prótese, no sentido de que ela possibilita ao aluno fazer coisas diferentes do modo que faria sem ela. Com o intuito de trabalhar com textos distintos, ora oferecemos tarefas em que os alunos interagiram com o computador, ora oferecemos uma tarefa em que a prótese era uma canaleta feita de cano de PVC, bola de tênis, bola de pingue-pongue, cronômetro e trena. As aulas em que os alunos trabalharam nessas tarefas foram filmadas utilizando uma filmadora VHS. Apontamentos por escrito em um diário de classe de algumas falas e intervenções dos alunos e da professora ajudaram a enriquecer a coleta de dados. A análise baseou-se na Teoria da Cognição Corporificada e no Modelo da Estratégia Argumentativa. Concluímos que o processo de compreender taxa média e taxa instantânea de variação não é o caso apenas de uma passagem de uma fórmula analítica a outra ou de um gráfico para uma fórmula. Existe uma diferença entre os mecanismos cognitivos para compreender o gráfico e a fórmula analítica, diferença esta que contribui com a dificuldade dos alunos com esse tópico. Não é apenas a definição formal que é responsável por essa dificuldade. Observamos que com o auxílio da tecnologia informática foi possível criar um ambiente onde o movimento fictivo, intrínseco da linguagem, se transformou em um movimento factivo. Isto é, quando retas secantes coincidiam com uma reta tangente por sucessivas aproximações e quando a reta tangente à curva num ponto podia se mover, ao mesmo tempo os valores do coeficiente angular dessas retas podiam ser vistos na tela.

Palavras-chave: Taxa de variação. Metáfora conceitual. Derivada. Movimento fictivo. Cognição corporificada. Estratégia argumentativa.

Downloads 886  886  Tamanho do arquivo 0 bytes  Plataforma PUC – São Paulo  Site http://
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


Categoria: Matemática Teses
Fazer Download agora!Uma nova abordagem na resolução do problema do caixeiro viajante Popular Versão: 
Atualização:  24/7/2013
Descrição:
SIQUEIRA, Paulo Henrique

Neste trabalho são apresentadas duas Redes Neurais Recorrentes para resolver o problema da Designação Linear. Na fase inicial do problema, onde os elementos da matriz de custos do problema da Designação devem ser determinados, utiliza-se Mapas de Kohonen, conhecidos também como Mapas Auto-Organizáveis, e na resolução do problema da Designação propriamente dito, a técnica utilizada é a Rede Neural Recorrente de Wang, com a aplicação de um princípio aqui proposto, denominado Winner Takes All. A fase de definição dos custos na resolução de um problema da Designação é de grande importância, pois se os custos não forem determinados de forma adequada, a solução final não será a ideal. O cálculo de custos para problemas da Designação com a utilização de Redes Neurais Artificiais é um assunto pouco explorado, que depende do tipo de aplicação pretendida. Quando a matriz de custos do problema da Designação é tal que admite múltiplas soluções ótimas, ou soluções ótimas locais muito próximas, a Rede Neural de Wang não converge, e a proposta apresentada neste trabalho mostra a utilização do princípio Winner Takes All para esta rede, obtendo-se soluções ótimas globais na maioria das matrizes testadas, utilizando-se aproximadamente 1% do número necessário de iterações da Rede de Wang original. Neste trabalho são apresentados os resultados da aplicação desta técnica (a Rede Neural Recorrente de Wang com o princípio Winner Takes All) para 73 matrizes com custos definidos aleatoriamente para o problema da Designação, além de alguns critérios para ajustes de parâmetros da Rede Neural de Wang, entre eles alguns tradicionais, e outros que utilizam medidas de dispersão entre os elementos da matriz de custos do problema. A metodologia proposta neste trabalho é aplicada em um estudo de caso: o Problema de Alocação de Salas de Aula para disciplinas de graduação e pós-graduação da UFPR, onde são testados mapas com diversas dimensões para a determinação dos custos deste problema. Os resultados encontrados com a aplicação desta metodologia no estudo de caso são considerados satisfatórios, com erro médio na solução final da Designação inferior a 3% para os melhores mapas encontrados. Uma outra aplicação da Rede Neural de Wang com o princípio Winner Takes All é a resolução do problema clássico do Caixeiro Viajante, com soluções ótimas globais em vários problemas do banco de dados TSPLIB, e com soluções ótimas locais com erros inferiores a 16%. Para aplicar a metodologia proposta neste trabalho para o problema do Caixeiro Viajante uma adaptação do princípio Winner Takes All é feita, obtendo-se sempre rotas factíveis para este problema. A mesma técnica é utilizada para problemas do Caixeiro Viajante simétricos e assimétricos, e a técnica 2-opt é utilizada para melhorar as soluções encontradas.

Palavras-chave: Resolução de problemas.

Downloads 309  309  Tamanho do arquivo 0 bytes  Plataforma UFPR  Site http://
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


Categoria: Matemática Teses
Fazer Download agora!Pensamento Estatístico e raciocínio sobre variação: um estudo com Professores de Matemática Popular Versão: 
Atualização:  10/5/2012
Descrição:
SILVA, Claudia Borim da

Devido à dificuldade encontrada por alunos de graduação para a compreensão do desvio padrão, este trabalho teve como objetivo verificar o raciocínio sobre variação e variabilidade nas etapas do ciclo investigativo do pensamento estatístico. Foram participantes da pesquisa nove professores de Matemática da escola básica e dois alunos de Matemática da Universidade de São Paulo. O trabalho seguiu os pressupostos de uma pesquisa-ação e a fase de implementação teve duração de quarenta e oito horas, divididas em dezesseis encontros de três horas cada. Foram discutidos os conteúdos estatísticos: distribuição de freqüência simples e com dados agrupados, representações gráficas, medidas de tendência central e dispersão. Os níveis de raciocínio sobre variação foram classificados de acordo com o modelo proposto por Garfield (2002). O diagnóstico identificou a ausência de raciocínio sobre variação, exceção feita a um professor que apresentava raciocínio idiossincrático. Durante a fase de sensibilização da pesquisa-ação e planejamento do ciclo investigativo, os professores apresentaram naturalmente o raciocínio sobre variabilidade, mas não sobre variação. Entretanto, a experiência com a elaboração de uma pesquisa, desde a definição dos objetivos até a coleta e montagem do banco de dados permitiu um avanço no desenvolvimento do pensamento estatístico dos professores, que já transitavam em três das quatro dimensões de sua estrutura elaborada por Wild e Pfannkuch (1999). Não obstante, o desenvolvimento do pensamento estatístico não implicou diretamente em um nível mais avançado do raciocínio de variação, observado durante a fase de análise dos resultados da pesquisa. Para a comparação de três distribuições de freqüências simples de variável discreta foram utilizadas a percepção da moda, a observação dos valores máximo e mínimo e da menor frequência e a elaboração de um intervalo de variação composto pelos valores da variável que tinham frequência nas três distribuições, conjuntamente, que foram categorizados como raciocínio verbal de variação até raciocínio de procedimento, respectivamente. A discussão sobre as medidas de tendência central permitiu observar a interpretação equivocada de média como maioria, que se refere à moda, que foi um fator impeditivo para a percepção da necessidade de uma medida de variação. A utilização do correto significado de média motivou os professores a utilizarem medidas complementares como a moda e os valores máximo e mínimo, mas não o desvio padrão. O significado atribuído ao desvio padrão foi, predominantemente, uma medida da variação entre as observações indicando homogeneidade da amostra, aspecto reforçado pelos livros didáticos de Matemática do ensino médio e categorizado como raciocínio verbal de variação. A composição do intervalo de um desvio padrão da média não surgiu naturalmente e mesmo os participantes que compreenderam esta interpretação do desvio padrão, apresentaram dificuldade para identificar o que tinha no intervalo. Acredita-se que o desenvolvimento de aplicativos computacionais para trabalhar o conceito de intervalo em torno da média possa auxiliar na aquisição deste raciocínio, considerado um raciocínio completo de variação. Conclui-se que a linguagem “maior variação” pode induzir dois diferentes raciocínios idiossincráticos: a maior variação das frequências em alguma categoria ou valor da variável de uma distribuição de frequências e a maior variação de observações diferentes na amostra, ambas não relacionadas com a medida de tendência central.

Palavras-chave: Pensamento estatístico. Nível de raciocínio sobre variação. Desvio padrão. Professores de Matemática. Pesquisa-ação.

Downloads 435  435  Tamanho do arquivo 0 bytes  Plataforma PUC – São Paulo.  Site http://
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


Categoria: Matemática Teses
Fazer Download agora!Aspectos do pensamento matemático na resolução de problemas: uma apresentação contextualizada da obr Popular Versão: 
Atualização:  23/7/2013
Descrição:
WIELEWSKI, Gladys Denise

A presente Tese de Doutorado pretende indicar características e dimensões do pensamento matemático, em termos teóricos e experimentais, que podem ser úteis aos professores no que se refere aos processos de ensino, ao desenvolvimento de idéias matemáticas e ao delineamento de contextos de aprendizagem. Nosso estudo começou com uma análise detalhada do trabalho de Krutetskii (1968). Esse livro é muito rico em exemplos e reflexões teóricas. No entanto, é um trabalho completamente psicológico e forneceu poucas indicações a respeito dos aspectos mais gerais do conhecimento matemático e do pensamento matemático. Por esse motivo, adicionamos informações detalhadas sobre o trabalho de outros autores como Gowers, Poincaré, Boutroux, Otte e Kurz que acrescentaram outras dimensões que auxiliaram a nossa compreensão da natureza da Matemática. Esses autores se preocuparam com problemas de estilos cognitivos, de diferenças culturais e históricas, de diferenças que são resultados das várias áreas da própria Matemática e distintas formas de representação na Matemática. As dimensões experimentais consistiram na análise de dados obtidos em pesquisas qualitativas com estudantes, sendo uma da literatura (Krutetskii) e outra uma pesquisa exploratória realizada por nós para a presente Tese. Krutetskii realizou uma investigação experimental envolvendo 201 estudantes russos do Ensino Fundamental, com diferentes habilidades matemáticas. A esses estudantes foram propostas diversas séries de problemas matemáticos, em que foram observadas suas habilidades matemáticas durante o processo de resolução. Na nossa pesquisa, realizamos estudos de caso exploratório na resolução de problemas matemáticos envolvendo 13 estudantes da Universidade Federal de Mato Grosso, sendo 09 do Curso de Licenciatura Plena em Matemática e 04 do Curso de Ciências da Computação. A pesquisa exploratória foi organizada em três momentos. O primeiro foi destinado a responder um questionário com perguntas subjetivas acerca da Matemática e de preferências na forma de pensar e de lidar com a mesma. O segundo momento foi reservado para a resolução de 13 problemas matemáticos variados. E o último momento foi destinado para responder a outro questionário com perguntas subjetivas que procurava obter informações sobre a experiência dos estudantes na atividade de resolução dos problemas propostos. Com a nossa pesquisa exploratória pudemos documentar e verificar vários parâmetros e características do pensamento matemático que foram descritos nos capítulos teóricos, bem como identificar que os próprios problemas e as experiências com a resolução dos mesmos também influenciam o pensamento matemático. Como resultado geral, concluímos que o pensamento matemático deve ser considerado sob diferentes parâmetros, pois eles podem auxiliar na caracterização mais completa do pensamento matemático.

Palavras–Chave: Epistemologia. História da Matemática. Pensamento matemático. Resolução de problemas e Representação matemática.

Downloads 502  502  Tamanho do arquivo 0 bytes  Plataforma PUC/SP  Site http://
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


Categoria: Matemática Teses
Fazer Download agora!Aspectos do pensamento matemático na resolução de problemas: uma apresentação contextualizada da Popular Versão: 
Atualização:  10/5/2012
Descrição:
WIELEWSKI, Gladys Denise

A presente Tese de Doutorado pretende indicar características e dimensões do pensamento matemático, em termos teóricos e experimentais, que podem ser úteis aos professores no que se refere aos processos de ensino, ao desenvolvimento de idéias matemáticas e ao delineamento de contextos de aprendizagem. Nosso estudo começou com uma análise detalhada do trabalho de Krutetskii (1968). Esse livro é muito rico em exemplos e reflexões teóricas. No entanto, é um trabalho completamente psicológico e forneceu poucas indicações a respeito dos aspectos mais gerais do conhecimento matemático e do pensamento matemático. Por esse motivo, adicionamos informações detalhadas sobre o trabalho de outros autores como Gowers, Poincaré, Boutroux, Otte e Kurz que acrescentaram outras dimensões que auxiliaram a nossa compreensão da natureza da Matemática. Esses autores se preocuparam com problemas de estilos cognitivos, de diferenças culturais e históricas, de diferenças que são resultados das várias áreas da própria Matemática e distintas formas de representação na Matemática. As dimensões experimentais consistiram na análise de dados obtidos em pesquisas qualitativas com estudantes, sendo uma da literatura (Krutetskii) e outra uma pesquisa exploratória realizada por nós para a presente Tese. Krutetskii realizou uma investigação experimental envolvendo 201 estudantes russos do Ensino Fundamental, com diferentes habilidades matemáticas. A esses estudantes foram propostas diversas séries de problemas matemáticos, em que foram observadas suas habilidades matemáticas durante o processo de resolução. Na nossa pesquisa, realizamos estudos de caso exploratório na resolução de problemas matemáticos envolvendo 13 estudantes da Universidade Federal de Mato Grosso, sendo 09 do Curso de Licenciatura Plena em Matemática e 04 do Curso de Ciências da Computação. A pesquisa exploratória foi organizada em três momentos. O primeiro foi destinado a responder um questionário com perguntas subjetivas acerca da Matemática e de preferências na forma de pensar e de lidar com a mesma. O segundo momento foi reservado para a resolução de 13 problemas matemáticos variados. E o último momento foi destinado para responder a outro questionário com perguntas subjetivas que procurava obter informações sobre a experiência dos estudantes na atividade de resolução dos problemas propostos. Com a nossa pesquisa exploratória pudemos documentar e verificar vários parâmetros e características do pensamento matemático que foram descritos nos capítulos teóricos, bem como identificar que os próprios problemas e as experiências com a resolução dos mesmos também influenciam o pensamento matemático. Como resultado geral, concluímos que o pensamento matemático deve ser considerado sob diferentes parâmetros, pois eles podem auxiliar na caracterização mais completa do pensamento matemático.

Palavras–chave: Epistemologia. História da Matemática. Pensamento matemático. Resolução de problemas. Representação matemática.

Downloads 1030  1030  Tamanho do arquivo 0 bytes  Plataforma PUCSP  Site http://
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


Categoria: Matemática Teses
Fazer Download agora!Formação de professores polivalentes: conhecimentos para ensinar Matemática, crenças e atitudes que Popular Versão: 
Atualização:  10/5/2012
Descrição:
CURI, Edda

O presente trabalho tem como objetivo investigar conhecimentos para ensinar Matemática, que devem ser constituídos por professores de atuação polivalente, bem como as crenças e atitudes que interferem na constituição desses conhecimentos. Pretende trazer contribuições para os cursos de formação inicial e continuada desses professores e para a ampliação das investigações dessa formação, no âmbito da pesquisa em Educação Matemática. Analisa os cursos de formação de professores polivalentes no Brasil, ao longo de sua história, no que se refere à preparação para ensinar Matemática e de que modo, nas propostas mais recentes desses cursos, estão sendo contemplados os conhecimentos dos conteúdos dessa disciplina, os conhecimentos didáticos sobre eles e os conhecimentos sobre o currículo dessa disciplina A partir da análise de um curso de formação de professores polivalentes e de uma pesquisa de campo com doze alunas-professoras, que participaram desse curso, busca identificar impactos dessa formação e analisar suas crenças e atitudes relativas à Matemática e seu ensino. Fundamenta-se nas pesquisas de Shulman (1992) sobre a especificidade própria de cada área de conhecimento, que justifica a necessidade de estudar o conhecimento do professor, tendo em vista a disciplina que ele ensina, e nas investigações de Gómez-Chacón (2002) sobre a influência de crenças e atitudes provenientes da formação escolar nos conhecimentos profissionais do professor. Utiliza pesquisa bibliográfica, documental e, na pesquisa de campo, entrevistas semi-estruturadas, análise de memórias e de portifolio elaborados pelas alunas-professoras. Aponta as implicações do fenômeno descrito por Shulman como “paradigma perdido” e fornece subsídios para que a construção de projetos curriculares de formação de professores polivalentes contemple, de forma articulada, as diferentes vertentes no conhecimento do professor, referentes ao conhecimento da Matemática, para ensiná-la.

Palavras-chave: Formação de professores polivalentes. Conhecimentos da Matemática para ensiná-la. Crenças e atitudes.

Downloads 1125  1125  Tamanho do arquivo 0 bytes  Plataforma PUCSP  Site http://
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


Categoria: Matemática Teses
Fazer Download agora!Ensino e aprendizagem do modelo de Poisson: uma experiência com modelagem Popular Versão: 
Atualização:  10/5/2012
Descrição:
MIGUEL, Maria Inez Rodrigues

Esta tese é centrada no ensino e na aprendizagem do Modelo de Poisson, seu questionamento refere-se ao uso da Modelagem Matemática, das etapas a serem consideradas e dos resultados, tanto na interação didática como nas aquisições e erros dos alunos participantes. As hipóteses de que o trabalho em dupla, o uso do computador e o experimento realizado na prática pudessem favorecer o desenvolvimento do projeto foram admitidas, a fim de serem validadas, ou não. Para tal, uma sequência de ensino, elaborada com base nas etapas de Modelagem Matemática de Henry, foi aplicada a um grupo de alunos do segundo ano de graduação em Engenharia Elétrica e Ciência da Computação de uma Instituição de Ensino Superior. No estudo, a metodologia adotada foi a Engenharia Didática que permite a validação das hipóteses pela confrontação entre as análises a priori e a posteriori e favorece o realinhamento das atividades durante o processo. As bases teóricas foram a praxeologia de Chevallard e o enfoque ontológico-semiótico da cognição e instrução matemática de Godino. A primeira norteou a análise dos livros didáticos, a elaboração e a apresentação das tarefas propostas na sequência pretendida; a segunda fundamentou a determinação de elementos de significado do Modelo de Poisson para serem considerados no ensino e orientar a análise dos resultados, possibilitando a identificação dos conhecimentos adquiridos que estão conforme a pauta institucional e os que podem ser considerados erros de aprendizagem.

Palavras-chave: Modelo de Poisson. Modelagem matemática. Engenharia Didática. Teoria Antropológica do Didático. Teoria das Funções Semióticas.

Downloads 633  633  Tamanho do arquivo 0 bytes  Plataforma PUCSP  Site http://
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


Categoria: Matemática Teses
Fazer Download agora!O Jogo como ferramenta no trabalho com Números Negativos: um estudo sob a perspectiva da Popular Versão: 
Atualização:  4/9/2013
Descrição:
KIMURA, Cecília Fukiko Kamei

O tema central deste trabalho é o estruturalismo construtivista, em que destacamos a importância da estrutura matemática para a aquisição do conhecimento lógico-matemático. Começamos nosso estudo apresentando um breve resumo sobre a vida e obra de Piaget, a teoria do conhecimento expondo os argumentos teóricos do racionalismo (Leibniz), do empirismo (Locke), do interacionismo (Kant) e o construtivismo piagetiano. Os temas abordados mostram as diferentes formas de compreender a origem do conhecimento. Devido à sua importância para o nosso trabalho fizemos um estudo sobre o estruturalismo piagetiano e estruturalismo matemático. Pelo fato de o estruturalismo piagetiano apresentar um caráter dinâmico relacionado com a atividade, organização, transformação, coordenação de ação e construção buscamos um modelo que atendesse a esses requisitos. Neste sentido, optamos pelo estudo do jogo na visão piagetiana, pois se apresenta como um modelo adequado das estruturas algébricas ou da Matemática em geral, assim para representar esses modelos fizemos um estudo sobre semiótica em Peirce e Piaget, pois o jogo apresenta uma ligação direta com a representação. No nosso trabalho apresentamos dois estudos: no primeiro, um estudo exploratório com questionário semiestruturado e, no segundo, aplicamos o jogo do tabuleiro de xadrez com atividades sobre os números negativos; as atividades foram desenvolvidas com dez professores de escola pública da rede estadual de ensino que atuam na 6ª série do Ensino Fundamental. O estudo conclui que o jogo é uma boa ferramenta, pois apresenta mais claramente a estrutura dos números negativos e oferece diferentes formas de representação.

Palavras-chave: Teoria do conhecimento. Construtivismo piagetiano. Estruturalismo. Jogos. Semiótica. Números negativos. Educação matemática.

Downloads 1716  1716  Tamanho do arquivo 0 bytes  Plataforma PUCSP  Site http://
Avaliação: 0.00 (0 votos)
Avaliar | Alterar | Informar erro | Indicar | Comentários (0)


« 1 2 3 4 5 6 (7) 8 9 10 »